

The University of Kansas

Copyright © 2002:
The University of Kansas Center for Research, Inc.
2335 Irving Hill Road, Lawrence, KS 66045-7612.
All rights reserved.

Technical Report

Design for a Satellite Communication Link in a
Space Based Internet Emulation System

Pooja J. Wagh
Gary Minden

ITTC-FY2003-24350-03

September 2002

Project Sponsor:
NASA

Glenn Research Center

Abstract

The Earth Observational Satellites (EOS) transmit their collected information to

communication satellites, which relay this information to the ground stations. NASA

employs Tracking and Data Relay Services Satellites (TDRSS) for communication

from the EOS satellites to the Earth. But each EOS satellite is assigned a fixed time

slot to access the TDRSS and to relay their data. So until their access time slot, the

EOS satellites need to store the data on-board using high data rate and high capacity

recorders.

The need for such huge storage components on the satellites could be eliminated if

the satellites were capable of routing and switching data to other satellites and ground

stations. The Space Based Internet (SBI) development project applies this concept to

design and implement a prototype for achieving inter-networking between the

satellites and ground stations.

To evaluate and test this prototype, the SBI project proposes to develop an emulation

system that will model an actual satellite system. One of the major functions of this

system would be to emulate the actual communication links between satellites and

ground stations or between satellites. The satellite link provides a constant bit rate

(CBR) service during the entire transmission duration but the signal transmission

suffers from high propagation delays. This thesis describes the requirements and

design for emulating an actual satellite transmission link, which would provide CBR

control as well as introduce the propagation delays during transmission.

 3

Table Of Contents

1 INTRODUCTION.. 7

1.1 SATELLITE TECHNOLOGY FOR EARTH OBSERVATION:... 7
1.2 EARTH OBSERVATION SATELLITES .. 8

1.2.1 Network Issues in Earth Observation Satellites : .. 8
1.2.2 Communication from EOS to Earth stations ... 8

1.3 PROBLEM DEFINITION.. 9
1.4 PROPOSED SOLUTION... 10

1.4.1 SBI Approach... 10
1.4.2 Background for SBI Emulation System.. 11

1.5 SCOPE OF THIS THESIS .. 13
1.5.1 Challenges ... 14
1.5.2 Solution.. 14

1.6 ORGANIZATION OF THESIS ... 15

2 BACKGROUND THEORY.. 17

2.1 SATELLITE SYSTEM : OVERVIEW ... 17
2.1.1 Space Segment ... 17
2.1.2 Ground Segment .. 18
2.1.3 Satellite Transmission Link.. 18

2.2 SBI SYSTEM ARCHITECTURE... 19
2.2.1 Features of the SBI system... 20
2.2.2 SBI Networking.. 22
2.2.3 SBI Software .. 22
2.2.4 SBI Emulation System Hardware .. 24
2.2.5 SBI Emulation System.. 25
2.2.6 SBI Node Software... 32

3 VIRTUAL ETHERNET.. 37

3.1 REQUIREMENTS FOR VETH LAYER ... 37
3.2 VETH ARCHITECTURE .. 40
3.3 VETH CONTROL PROGRAM .. 41

3.3.1 Ioctl () system call... 42
3.3.2 Create Option .. 43
3.3.3 Destroy Option .. 44
3.3.4 List Option ... 44
3.3.5 Ifconfig commands... 44

3.4 IMPLEMENTATION OF THE VETH LAYER ... 45
3.4.1 VETH Top Level Design .. 45
3.4.2 VETH Detailed Design .. 49

4 CONSTANT BIT RATE SERVICE... 58

4.1 TRAFFIC CONTROL IN LINUX ... 58
4.1.1 Overview.. 59
4.1.2 Queuing Disciplines .. 60
4.1.3 Classes... 60
4.1.4 Filters .. 61

4.2 CBR CONTROL FOR SBI EMULATION SYSTEM .. 61
4.2.1 Requirements for CBR Control in SBI... 61
4.2.2 CBR Control Mechanism... 62

 4

4.3 TOKEN BUCKET FILTER (TBF)... 63
4.3.1 TBF Mechanism... 63
4.3.2 Linux TBF Queuing Discipline .. 64

4.4 CLASS BASED QUEUING... 64
4.5 U32 CLASSIFIER .. 65
4.6 “TC” UTILTY.. 65

4.6.1 Interface between the user and the Linux kernel ... 66
4.7 CBR CONTROL IN SBI EMULATION SYSTEM ... 66

4.7.1 Example Scenario for CBR Control... 68
4.7.2 CBR control without Class Bases Queuing (CBQ).. 70
4.7.3 CBR Control with Class Based Queuing (CBQ)... 71

5 LINK PROPAGATION DELAY.. 75

5.1 REQUIREMENTS FOR SIMULATING THE PROPAGATION DELAY... 75
5.2 PROPAGATION DELAY VARIATIONS IN SATELLITE SYSTEMS ... 77

5.2.1 Using Satellite Tool Kit for delay analysis .. 78
5.2.2 Scenario Details .. 79
5.2.3 Analysis of Link Propagation Delays .. 81

5.3 ALGORITHM FOR SIMULATING DELAY ... 94
5.3.1 Requirements ... 94
5.3.2 Calculations for the number of In-flight Packets... 95
5.3.3 Algorithm Flow.. 98

5.4 DELAY CONTROL PROGRAM .. 99
5.5 IMPLEMENTATION AT THE VETH LAYER... 100

5.5.1 Additional data structures in the VETH Layer .. 101
5.5.2 Additional Functions for the VETH layer.. 102
5.5.3 Modifications to the existing VETH Layer Functions.. 105
5.5.4 Function Flow for simulating the delay... 106

6 CONCLUSIONS AND FUTURE WORK ... 108

6.1 CONCLUSIONS.. 108
6.2 FUTURE WORK .. 109

REFERENCES .. 110

APPENDIX .. 112

APPENDIX A : COMMANDS AND EXAMPLES RELATING TO VETH DEVICES..................................... 112
APPENDIX B: SCRIPT FOR SETTING UP TBF AND CBQ QUEUING DISCIPLINES 114
APPENDIX C: USING STK FOR DELAY ANALYSIS.. 116

 5

List of Figures

Fig 1: EOS to Ground Station Communication through TDRSS 9

Fig 2: Space Based Internet System Architecture 25

Fig 3: SBI Emulation Manager Architecture 27

Fig 4: SBI Node Emulation Software Modules 30

Fig 5: SBI Operations Node Software Modules 33

Fig 6: SBI Node Software Modules 35

Fig 7: Mac Address Representation for the Virtual Devices 38

Fig 8: SBI Network Layers and Controls 42

Fig 9: SBI Node Controls for providing CBR service 67

Fig 10: SBI System Scenario implementing CBR Control 69

Fig 11: SBI Node CBR Control with Class Based Queuing 72

Fig 12: User Application using Connect Module to interface with STK 79

Fig 13: Propagation Delay versus Time for LEO-Ground Station Access 82

Fig 14: Propagation Delay versus Time for MEO-Ground Station Access 84

Fig 15: Propagation Delay versus Time for GEO-Ground Station Access 86

Fig 16: Propagation Delay versus Time for LEO-MEO Access 88

Fig 17: Propagation Delay versus Time for MEO-GEO Access 90

Fig 18: Propagation Delay versus Time for LEO-GEO Access 93

Fig 19: SBI Node Controls to simulate propagation delay 99

 6

List of Tables

Table 1: Details of the Satellite elements in the Scenario 80

Table 2: STK Access Report for a LEO-Ground Station Link 81

Table 3: STK Access Report for a MEO-Ground Station Link 83

Table 4: STK Access Report for a GEO-Ground Station Link 85

Table 5: STK Access Report for a LEO-MEO Link 88

Table 6: STK Access Report for a MEO-GEO Link 89

Table 7: STK Access Report for a LEO-GEO Link 92

Table 8: Transmission Delay for different packet sizes 96

Table 9: Number of bytes in-flight on a LEO-Ground Station 96

Table 10: Number of bytes in-flight on a LEO-MEO Link 96

Table 11: Number of bytes in-flight on a LEO-GEO Link 97

Table 12: Number of bytes in-flight on a MEO-Ground Station link 97

Table 13: Number of bytes in-flight on a MEO-GEO Link 97

Table 14: Number of bytes in-flight on a GEO-Ground Station link. 98

 7

Chapter 1

1 Introduction

1.1 Satellite Technology for Earth Observation:
The concept of satellite communication gained importance when the first artificial

Earth orbiting satellite in 1957[4], Sputnik transmitted information from space to

Earth. Since then, the satellites have been widely used for telecommunications and

Earth Observation purposes. Earth Observing System satellites (EOS) have enhanced

our understanding of the Earth and surrounding space through remote sensing and

communication of those results back to the Earth.

In 1991, NASA launched a comprehensive program called the Earth Science

Enterprise (ESE) [1] to study the Earth as an environmental system. By launching

EOS satellites, NASA hoped to understand the impact of natural processes on the

humans. The main aim of the ESE mission was to explore how the Earth’s systems of

air, land, water and life interact with each other and so this mission blended together

fields like meteorology, oceanography, biology and atmospheric science.

The Earth Science Enterprise has three main components: a series of Earth-Observing

Satellites, an advanced data system and a team of scientists to study the data. Phase I

of this mission comprised of focused and free-flying satellites, Space Shuttle missions

for airborne and ground-based studies. Phase II launched the first Earth Observing

System (EOS) [2]satellites, Terra and Landsat-7. EOS supports a coordinated series of

polar-orbiting and low-inclination satellites for long-term global observations. EOS

satellites also coordinate their data collection with the other EOS satellites to provide

information about a single event such as a hurricane.

 8

1.2 Earth Observation Satellites
The Earth Observing Satellites focus on monitoring and predicting the future changes

in the environment. The EOS satellites can make observations over a larger area than

the terrestrial stations. EOS can observe and monitor places such as distant parts of

oceans, deserts and Polar Regions, which cannot be accessed by terrestrial links and

thus prove to be advantageous for earth observations.

Some of the important applications of the Earth observation satellites are:

• Remote sensing over land and water

• Atmospheric measurements

• Predicting natural disasters like floods, hurricanes

• Navigation

• Weather forecasts

1.2.1 Network Issues in Earth Observation Satellites :

Earth Observation satellites use number of technologies to collect observations and

store raw data and communicating the information to the earth stations. These

techniques include direct transmission, storage and deferred transmission and relay

through communication satellites.

1.2.2 Communication from EOS to Earth stations

The communication in satellites is based on Line of Sight principle. The

communication relay satellites receive and transfer the data information to the

destination ground terminal when the ground terminal is in view of the satellite. The

Earth Observation satellites use these relay communication satellites to transmit their

information to the ground stations.

The Relay system currently employed by NASA EOS satellites is the TDRSS system.

TDRSS stands for Tracking and Data Relay Satellite System [6]. There are currently

 9

6 TDRSS communications relay satellites, which provide complete global coverage.

These satellites are able to see the ground stations, which fall within its coverage area,

at all times.

The EOS satellites take measurements over fixed points on the earth and then

broadcast the data to TDRSS satellites. Through TDRSS, the EOS satellites can

access the required ground station for 60 to 70% of its orbit time. Since there is a

constellation of TDRSS satellites, the EOS satellites fall under the coverage area of

any one TDRSS satellite or the other. TDRSS employs tracking services to locate the

ground stations and relay services to transmit the information received from different

sources to their respective destination ground stations. Fig1 shows the communication

between the EOS satellites and the ground stations through TDRSS.

Fig 1: EOS to Ground Station Communication through TDRSS

1.3 Problem Definition
There are a large number of EOS satellites within the coverage area of a single

TDRSS satellite and so each EOS satellite has a fixed time slot to transmit

EOS

TDRSS

Ground

Station

 10

information to TDRSS. Therefore, the EOS satellites need to have high data rate and

high capacity recorders to store data on board. Also, the communications systems on

the satellites need to be satellite specific, which means that each satellite should have

its own communication frequency, protocol and command structure. This approach

leads to incompatible and non-reusable communications components.

1.4 Proposed Solution
The Space Based Internet (SBI) development project proposes a solution to the

current problems in satellite communication. It aims at establishing routing

capabilities in the EOS satellites and ground stations. Such a mechanism will enable

the EOS satellites to route data to the intended ground stations via other EOS

satellites or ground stations and so eliminate the need for onboard data recorders.

The SBI project envisions that each EOS satellite participates in a Space-Based

Internet. That is, each satellite in the SBI system would be capable of originating

network traffic, terminating traffic and above all, switching traffic between other

satellites and ground stations [3]. The satellites would carry a communications

systems, which has several channels or beams (RF or optical) and the satellites would

communicate with each other over Internet Protocol (IP). By centering the SBI

system over a common communication protocol (IP) eliminates the need for having

any satellite-specific communications systems or specialized ground station

equipment [3].

1.4.1 SBI Approach

The SBI project proposes to design, develop and implement an initial prototype of the

architecture for creating a Space Based Internet. The SBI network software

implementing the routing and switching functionality will comprise of standard

modules that can be deployed with minimal cost on the satellites and ground stations.

 11

This approach will lead to a standard communications system on every satellite and

ground station.

To evaluate the SBI system prototype, an SBI emulation system has to be developed.

The emulation system will model the actual satellite system. Emulating a satellite

system would involve execution of actual scenarios with the emulation nodes

executing the SBI network software and applications programs.

The emulation approach reduces the complexities and the costs involved as against

evaluating the SBI software on a real satellite system. The emulation setup consists of

normal PCs acting as emulation nodes, which would run the SBI network software.

Different scenarios can be executed and tested without having to change much of the

setup. The emulation system has to emulate the communications systems hardware on

the satellites, since it is not feasible to construct the satellite hardware on the SBI

nodes.

1.4.2 Background for SBI Emulation System

The motivation and the foundation for designing the SBI system is derived from the

work done by University of Kansas for the Defense Advanced Research Projects

Agency (DARPA). The project Rapidly Deployable Radio Network (RDRN)

developed network control programs and communications systems to demonstrate a

rapidly deployable network

1.4.2.1 RDRN System

The RDRN system utilized wireless ATM technology to provide an adaptive and re-

configurable network. It had interoperability with IP based networks and provided

multi-hop operation over wireless nodes as far as 10 Km in distance.

 12

Each RDRN node had RF communications systems and network control programs to

establish the network topology and the optimum routes. In real environment, the

nodes determined their location from Global Positioning Receivers. Knowing the

locations of all the nodes, the system configured the network topology establishing

point-to-point switched communication links. Further, the RDRN nodes calculated

the optimum routes to the other nodes through the routing software.

The RDRN emulation system was designed to test the RDRN network for multiple

scenarios. The emulation system helped to evaluate systems, which would be much

larger than those possible through actual deployment.

1.4.2.2 RDRN Emulation System

RDRN emulation system was built to test and evaluate the RDRN software. It

consisted of RDRN nodes and the Emulation Manager, which controlled the

emulation and the communication network between the nodes.

The Emulation Manager was the bridge between the RDRN network nodes. In the

emulation environment, the nodes initially registered themselves with the Emulation

Manager and the Emulation Manager tracked the position of each RDRN node as per

the scenario configuration file.

The network control software executed the topology algorithm to determine the

network topology. Upon deciding the topology, the Emulation Manager established

the point-to-point links via the underlying ATM network. The routing protocol

configured the optimum routes for each node. The communications network was

based on “virtual circuits” created on the underlying ATM network.

 13

The SBI Emulation System can be designed from the RDRN Emulation System. The

existing RDRN framework can be used with some modifications to the

Communication Emulation System to emulate space communication.

1.4.2.3 SBI Emulation System.

The SBI Emulation System design extends the land-based RDRN emulation system

to emulate space-based systems. The SBI emulation system models the entire satellite

system and the emulation nodes represent either satellites or ground stations.

Following modifications can be done to the RDRN emulation system to build the SBI

emulation system:

• The RDRN emulation node has to represent a ground station or a satellite in

Earth’s orbit.

• The land-oriented node location and topology algorithms have to be modified to

incorporate mobile nodes in Earth orbit.

• The RDRN nodes communicate over short distances and at relatively low

capacity. A SBI communication will be over much longer distances and will use

high capacity links to handle observational data. Therefore, the communication

emulation software for RDRN has to be modified to account of long-ranged,

space-based communication systems.

• Communication Traffic models have to be developed according to the satellite

systems and earth scientist’s data gathering goals.

• Along with routing algorithms, the emulation system also has to include

scheduling algorithms, which schedule the satellite instruments for data collection

and gathering.

1.5 Scope of this thesis
This thesis describes the requirements and design for emulating the communication

link between the satellites and ground station nodes in the SBI Emulation system.

 14

Communication emulation involves modeling the communication channel and

incorporating the features of the satellite transmission link for space-based

communications. The following features will be emulated:

• The communication channel on the satellite, which forms the medium for wireless

communication in space. Each satellite or a ground station has communication

channel, which transmits the signals on the transmission link.

• Constant bit rate service to provide a guaranteed and fixed data rate on the link.

• Link Propagation delays during data transmission, which would be the actual path

delays occurring on the satellite links.

1.5.1 Challenges

To emulate the communications systems requires consideration of the following

aspects:

• A satellite or a ground station can form multiple links. Therefore each emulation

node should facilitate multiple connections with other emulation nodes.

• The NASA EOS satellite orbits are somewhat irregular. So, even though it

possible to predict, the communication resources at any point in time and space

are varying. So it is highly challenging to provide a dedicated bandwidth for each

instrument link on the satellite [3].

• The propagation delay in satellites is very high. It varies from 10-250ms one-way.

To simulate such a high propagation delay on the emulation nodes would require

a large number of packets to be queued at the transmission node.

1.5.2 Solution

This thesis provides the following solutions to the above mentioned challenges:

• A satellite establishes wireless connection with the receiver ground stations by

pointing its instrument antenna in the direction of the receiver antenna. A satellite

might have multiple instruments facilitating multiple connections. In the SBI

Emulation network, each satellite link is emulated as an IP over Ethernet

 15

connection between two emulation test nodes. To model the multiple instrument-

links would require an equal number of physical Ethernet interfaces on a test

node. The first section of the thesis deals with creating virtual Ethernet interfaces

on a single physical Ethernet device to enable multiple connections on a test node.

The virtual Ethernet devices will model the behavior of multiple instrument

communication channels on the satellites.

• Each satellite link has a fixed dedicated bandwidth. The link capacity is specified

by the instrument data rates. The total capacity on the satellite is the sum of all the

link capacities. In the emulation environment, each node will have bandwidth

equal to the satellite capacity. The node shall reserve the bandwidth on the

different links as per the satellite specifications. The bandwidth on each link

should be fixed and guaranteed, as each link would be dedicated to either routing

or data collection. The second part of the thesis describes the design for providing

a constant bit rate on the link by utilizing traffic control Quality of Service

algorithms in Linux.

• The satellite links establish communication over long distances. The signal

transmission on these links suffers from high propagation delay. The propagation

delay ranges from 50 to 250ms depending on the distance between the satellites

and the ground stations or other satellites. The propagation delay on a particular

link is also not constant as the satellites are in constant motion. The third part of

the thesis describes the mechanism for simulating the propagation delay during

data transmission on the emulation test node.

1.6 Organization of thesis
The rest of the thesis is organized in the following manner. Chapter 2 describes the

background theory for this thesis, the fundamental principles of satellite

communication and gives an overview of the SBI system emulation architecture.

 16

Chapter 3 describes the design for creating the Virtual Ethernet devices on the

emulation nodes. The Virtual Ethernet devices will model the behavior of the

communication channels on the satellite or ground station. Chapter 4 talks about

providing Constant Bit Rate Control on the emulation link and Chapter 5 describes

the mechanism for simulating the path delay on the link. The final chapter states the

conclusions and the scope for future work.

 17

Chapter 2

2 Background Theory

The communication systems on the satellites consist of several channels (RF or

optical). Each channel establishes a transmission link for communication. This

chapter gives a brief overview of the current satellite systems and then proceeds to

describe the SBI emulation system that is designed to emulate the satellite system.

2.1 Satellite System : Overview
This section gives an overview of the current satellite system, its components and the

characteristics of the transmission link. The satellite system comprises of ground

segment and the space segment. The space segment constitutes the satellites while the

ground segment is the earth ground stations.

2.1.1 Space Segment

A satellite establishes a line-of-sight wireless link with the ground stations. Since the

transmission and the reception frequencies for the satellites are different, the satellite

has to communicate with two types of earth stations. The uplink earth station

modulates the signals and radiates it to the satellite, which in most cases is a relay

satellite[5]. The satellite receives the signal and shifts the signal frequency, amplifies

it and then re-radiates it back to the earth where it is received by downlink earth

stations [5]. The EOS satellites rely on the TDRSS system to relay their information.

Satellites communicate with the ground stations or other satellites through a

transmission link between the source and the destination antennas. Antennas on the

satellites and the ground stations provide directionality and focus for the signals to be

transmitted. In absence of the antenna, the signals would radiate in all directions in

space and the quality of the signal reaching the destination would be low.

 18

Every satellite has a different mission and so each satellite is designed individually,

that is each satellite has its own communications frequency, protocol and command

structure.

2.1.2 Ground Segment

The ground segment comprises of the uplink and the downlink earth station

components. They include:

• Multiple beam antennas for simultaneous communications with other satellites.

• Precision Systems for tracking satellites.

• Uplink and downlink Communication Equipment.

• Telemetry Tracking and Command (TT&C) systems for monitoring the

performance of the satellites and receiving telemetry data from the satellites.

2.1.3 Satellite Transmission Link

The transmitter antenna on a satellite establishes a communication link with the

receiver antennas for relaying information. The following factors are important for

evaluating the link performance:

• The ability of the link to provide a guaranteed Constant bit rate service.

• Link Propagation Delay.

• Satellite Channel Bit Error Rate (BER)

2.1.3.1 Transmission Capacity

The transmission capacity depends upon the allocated satellite bandwidth for the link.

Each communication channel on the satellite has reserved bandwidth to provide

Constant Bit Rate Service for voice, video and data traffic. The satellite bandwidth

has to be efficiently utilized in case of multiple links.

 19

2.1.3.2 Transmission Delay

Due to large distances between the satellite and the Earth, the signal, travelling at the

speed of light takes a long time to propagate to the earth and then back to the satellite.

A complete round trip propagation delay for a satellite link between a GEO satellite

and the earth, which is approximately 36,000, Kms is around 250ms. This large delay

has an adverse effect on the transmission of voice and video traffic. In case of data

communications involving transmission speeds of 10Mbps and higher, huge amount

of data transmitted by a source is temporarily in flight on the satellite link due to such

a high propagation delay [4].

2.1.3.3 Satellite Channel Bit Error Rate(BER)

BER is defined as the number of transmitted bits received with errors. It is expressed

as a proportion of the total number of bits transmitted. It is specified in the following

form: N in 1 x 10x where N is commonly unity.

The channel bit rate is a function of the weather conditions along the propagation

path. It is unpredictable and variable and during heavy rain storms or cloud cover

BER can be higher than 1 in 106. Larger distances between the satellites and the earth

stations can result in a higher BER. BER as low as 1 in 1010 can be achieved by

employing Forward Error Correction (FEC) technique [4].

2.2 SBI System Architecture
The previous section described the elements of the current satellite system. This

section details the architecture of the SBI system The SBI project proposes to

establish internetworking through wireless Ethernet technology between Earth

Observation Satellites (EOS).

The SBI system is designed to facilitate IP over Ethernet connections between the

satellites and ground stations or other satellites. Since the communication is based on

 20

a common protocol, it eliminates the need for designing any satellite-specific

communications systems or any specialized ground station equipment. The SBI

system software modules also can be deployed on the satellites and ground stations

with minimal cost.

The proposed SBI system design is divided into 2 parts:

• SBI Emulation System:

This system emulates the satellites and ground stations on an emulation testbed.

The components of the emulation system model the real hardware and the actual

communications systems through software. It also emulates the satellite

communication links between the emulation nodes. The SBI emulation system is

designed solely for emulation purposes and is not a part of the SBI system to be

placed on actual satellites and ground stations [7].

• SBI Node Network:

The SBI network software creates the space-based Internet between the actual

satellites and ground stations. This architecture employs software modules that

can be loaded on to the actual satellites and ground stations to enable them to

switch network traffic. The SBI network software is evaluated on the SBI

emulation system.

2.2.1 Features of the SBI system

2.2.1.1 Types of Satellites

In the emulation environment, each SBI node represents a satellite or a ground

station. There are 3 types of nodes:

• Data Source and Relay Satellites

• Relay Satellites

• Facilities or ground stations

 21

Data Source and Relay Satellites:

These satellites are mostly EOS satellites. These satellites are responsible for

collection of data and also relaying the information to the other SBI nodes in the

emulation. For SBI satellites that are under consideration, the instrument rates might

range from a few bits per second to at least 150Mbps [7]. The bit rate on the

communication link should be able to handle the peak data rate of all instruments that

can make observations simultaneously.

A Data Source and a Relay satellite should also have at least two transmitters and

receivers to establish data links for routing data. The data links will have a dedicated

bandwidth which should be sufficient to carry the peak rate of all the satellite

instruments and plus the data that is routed from the other satellites.

In the actual satellite environment, these satellites would represent Low Earth

Orbiting (LEO) satellites. LEO satellites orbit at an altitude less than 2000 Kms from

the earth’s surface.

High Capacity Relay Satellites:

These satellites are used solely for relay purposes. They act as router satellites

switching traffic between other satellites and ground stations. These satellites have

high data rates and need at least 2 dedicated links to function as a router satellite.

A high capacity relay satellite represents satellites in the Geo-stationary (GEO) or

Medium Earth (MEO) orbits. GEO satellites are placed at 36,000 Kms above the

earth’s surface. These satellites have a larger coverage area of the earth and therefore

are able to see most of the LEO satellites and ground stations within their coverage

area. These satellites can function as good routers. MEO satellites are about 10,000

Kms above the earth’s surface and have less coverage area than GEO satellites.

 22

Facilities:

A facility represents a ground station on the earth’s surface. The SBI node

representing ground stations should have at least one antenna. It can form link with

any type of SBI satellite.

2.2.2 SBI Networking

The SBI networking models the satellite transmission links and emulates the actual

communication between the satellites and the ground stations. The data

communication between SBI emulation nodes is IP-based networking over Ethernet.

The communication links established between nodes have two types of data rates:

• Low Data rates for Data Source and Relay Satellites for data collection

• High Data Rates for the Relay Satellites and the Facilities for routing purposes.

The SBI communication is based on a common Internet Protocol (IP). This eliminates

the need for satellite-specific communications systems and specialized ground station

equipment in the real satellite systems. IP based communication will also allow the

SBI system to evolve with technological advances.

The SBI nodes contain software modules that will use adaptive algorithms to figure

out the network topology and route the network data through optimum routes.

2.2.3 SBI Software

There are three types of nodes in the SBI emulation environment:

• Emulation Manager – controls and monitors the entire emulation. This node is a

part of the Emulation System.

• Central Operations Node – acts as the TT&C Earth Station for configuring the

network topology and figuring the optimum routes for the entire network.

• SBI Nodes – represent the satellites and ground stations.

 23

The SBI software is in the form of modules that can be loaded on to the emulation

nodes. The software can be classified into two categories:

• SBI Emulation Software

• SBI Node Software

SBI Emulation Software:

SBI Emulation Software emulates those portions of the satellite and the ground

station communications hardware, which cannot be constructed on the SBI emulation

nodes[7]. It emulates the communication channels on the satellites and ground

stations and models the communication links between the channels.

SBI Node Software:

SBI Node Software refers to the software modules that would be placed on the

satellites and the ground stations in an actual satellite system [7]. This software is

resident on all the SBI nodes but mainly on the Central Operations Node. The Central

Operations Node software contains modules, which implement adaptive algorithms

for configuring the entire network topology. It figures out the optimum connections

between the nodes based on the scenario parameters obtained from the emulation

manager. It decides the routing tables for SBI nodes and communicates with the other

nodes to transmit all the routing information.

The Node Software on the other SBI nodes is responsible for receiving the routing

information from the operations node. Based on the information obtained from the

operations node, the SBI nodes initiate request for creating or deleting inter-nodal

connections. This software also relays satellite-instrument data through the

established connection links. The inter-nodal connections emulate the actual

communication links in the satellite system.

 24

2.2.4 SBI Emulation System Hardware

The SBI emulation system hardware contains two networks involving the Emulation

Manager. The SBI nodes form a Data Network based on Ethernet connections

through a managed Ethernet switch. The Emulation Manager configures the

connections between the SBI nodes. The second network runs through an unmanaged

Ethernet switch and is used by the Emulation Manager to send control commands to

the other nodes and also sense the status of the emulation. The SBI nodes receive

their configuration parameters from the Emulation Manager through the second

network.

Figure 2 illustrates the SBI System Architecture. The Emulation Manager interacts

with the other SBI nodes on both the networks. The details of each entity will be

explained in details in the later sections.

 25

Fig 2: Space Based Internet System Architecture

2.2.5 SBI Emulation System

This section describes the emulation system architecture for the SBI environment.

The emulation system tests and evaluates the SBI network software. A SBI node in

 26

the emulation system represents a satellite or a ground station as specified in the

emulation scenario.

The components of the emulation system software are:

• Emulation Manager, which is responsible for control and administration of the

entire emulation scenario.

• Node Emulation Software on the other SBI nodes. This software contains

modules to emulate the satellite communication channels and transmission links

and modules to interface with the actual Node software.

2.2.5.1 Emulation Manager

The Emulation Manager is the central controlling entity for the emulation system. It is

a user-level application and hosts the configuration files necessary for creating and

executing the emulation scenario [8]. It is responsible for emulating the

communication links on all the other SBI nodes.

The components of the Emulation Manager are:

• Communications Controller – controlling the communication emulation.

• Event Controller – responsible for event scheduling.

• Orbital Manager – performs orbital calculations and computations for the

emulation scenario.

• User Interface Manager – Interfaces with the user for input for the emulation

scenario.

The various components of the Emulation Manager are described below. Figure 3

shows the Architecture for the Emulation Manager and its modules.

 27

Fig 3: SBI Emulation Manager Architecture

2.2.5.1.1 Communication Controller

The communications controller controls the configuration and control of the

emulation nodes. It hosts three types of manager modules to communicate with the

modules on the other SBI nodes.

 28

• Node Manager

The Node Manager is the interface to the other SBI nodes. The control and the

configuration commands from the Emulation Manager are transmitted to the other

SBI nodes through this manager module.

• Connection Manager

The connection manager controls the connections between the SBI nodes. These

Ethernet connections emulate the communication on the transmission links in satellite

system. The connection manager receives requests from the SBI nodes to create or

remove the connections. The connection manager accordingly creates or removes

connections on the managed Ethernet switch.

• Operations Channel Manager

The Emulation Manager acts as a medium of communication between the Central

Operations Node and the other SBI nodes. The Operations Node represents the TT

&C earth station, which sends commands to the other satellites and ground stations.

In the real world, the TT&C earth stations use S-Band communication for these

purposes but in the emulation environment, the commands from the Operations Node

go through the emulation manager to the respective nodes [8].

The operations channel manager receives the commands from the Central Operations

Node and forwards them to the respective nodes. The commands are mostly

instruments scheduling, data transfer scheduling and those related to routing

information.

2.2.5.1.2 Event Controller

Event controller schedules the events on the Emulation Manager. This simplifies the

task of the emulation manager in controlling the entire emulation. Emulating a

satellite scenario having many satellites and ground stations involves a lot of orbital

 29

calculations for the emulation manager. The emulation manager also, has to configure

each node according to the specifications. It has to keep track of connections between

the nodes and also issue control commands to the nodes. All these actions are

considered as events.

The event controller maintains a list of events that are set to occur according to the

time of occurrence in an event queue. The event manager module is responsible for

the actual scheduling of the events.

2.2.5.1.3 Orbital Manager

The orbital manager is responsible for all the orbital calculations pertaining to the

emulation scenario. The orbital calculations comprise of the orbital positions and

propagation calculations. It also houses a Node Database, which keeps information

regarding each emulation node. The information contains the node name, type of

orbit, mission, positional and vehicular data and data link rates [8].

The orbital manager interfaces with the Satellite Tool Kit (STK) [17] from Analytical

Graphics, Inc. to get the node information and performing orbital calculations. The

node database information is conveyed to the Central Operations Node for deciding

on the network topology and the optimum connections.

2.2.5.1.4 User Interface Manager

The user interface manager interacts with the user for purposes of executing the

scenario. It has an I/O Module to control the user interface displays. The user can

issue commands to start, stop, pause and resume requests to the scenario. The Config

Module retrieves data from the configuration files regarding all the attributes of the

scenario to be executed and routes it to the Orbital Manager. The Log Module writes

out log data periodically to the log files corresponding to events occurring in the

emulation.

 30

2.2.5.2 Node Emulation Software

The Node Emulation Software resides on the other nodes. This unit interacts with the

components of the SBI network software and implements the communication

emulation unit on the nodes. Figure 4 describes the modules of the Node Emulation

Software.

Fig 4: SBI Node Emulation Software Modules

 The following sections describe the Node Emulation Software.

 31

2.2.5.2.1 Node Controller

The node controller provides interface to the managerial modules on the Emulation

Manager and also interacts with the Node software and the communication emulation

unit on the nodes. It has the following modules:

The Node Control module receives commands from the Emulation Manager and

takes appropriate actions. The actions include elaborate requests such as stop, start or

pause or involve forwarding of commands to the Node software [8].

The Manager Interface receives orbital data for the node from the EM and routes it to

the Node software. On the Central Operations Node, this module receives orbital data

pertaining to the entire scenario from the Emulation Manager and sends it to the Node

software for orbital calculations.

The Communications Controller module controls the behavior of the communication

emulation unit. The communication emulation unit is responsible for emulating the

satellite communication between the nodes. This module implements multiple

communication channels by using virtual Ethernet devices for communication. This

module also retrieves from the Emulation Manager, the values for data link rates and

propagation delay on the communication channels, and sends it to the communication

emulation unit.

The Routing Stub module conveys the Emulation Manager in case of change in any

routing connections. The Emulation Manager acts on this data by adding or removing

a connection on the managed Ethernet switch.

The Operations Interface on the Operations node transmits scheduling commands and

routing information to the Emulation Manager. The other SBI nodes receive the

information through the same interface.

 32

2.2.5.2.2 Communication Emulation Unit

This unit is responsible for inter-nodal communication. This unit emulates the

characteristics of an actual communication link. The satellite instrument data

generated by the emulation nodes is sent through this unit to the connected nodes on

the managed Ethernet switch. It models the following characteristics of satellite

communication:

• Communication channel – The communication emulation unit models a

communication channel for a satellite instrument by creating a virtual Ethernet

device on the emulation node. A satellite communication link is established

between the virtual devices on the emulation nodes. To facilitate multiple

connections on the nodes, multiple virtual devices have to be created.

• Communication link – The transmission link features are modeled on the Ethernet

connection between two emulation nodes. It provides the following features on

the link :

• Constant bit rate service by reserving bandwidth on each link through

Quality of Service.

• Link Propagation delay to simulate the actual link transmission.

The nodes create and configure the virtual devices through the Comm Control

module.

2.2.6 SBI Node Software

The SBI node software is the actual software that is to be deployed on the satellites

and ground stations in a real environment. In the emulation world, this software

resides on the nodes other than the Emulation Manager. This section gives a brief

overview of the network software and its interaction with the communication

emulation unit, which is the main focus of this thesis.

 33

The network software can be divided into 2 major sections:

• Operations Node software – This piece of software resides on the Central

Operations Node, which emulates the TT&C earth stations.

• Node Program Software – This software module resides on all the nodes, other

than the emulation manager

2.2.6.1 Operations Node Software

This module is responsible for all the connections between the SBI nodes. It

determines the network topology and configures all the routing tables for all the SBI

nodes. Figure 5 shows the different modules of the operations node software.

Fig 5: SBI Operations Node Software Modules

The Attributes Module receives node configuration parameters through the Node

Emulation Software and passes it on to the Topology Module. The Topology Module

 34

determines the network topology and the optimum connections between the nodes.

The Routing Module configures the routing tables for all the nodes by considering the

optimum routes to the destination. The Instrument Scheduling module receives the

attributes from the Attributes Module and is responsible for scheduling the satellite

instruments on the nodes. The routing and the scheduling information is transmitted

to the respective nodes via the Emulation Manager. The Operations Node utilizes the

Operations interface for this purpose.

There are various factors on which the topology algorithm decides on the

connections:

• Occlusion by Earth i.e. Loss of Line of Sight (LOS). The satellites communicate

on the LOS principle. Therefore the decision for connections can be made on

whether the satellites and the ground stations can see each other or not.

• Instrument-link capacity. Each connection requires a dedicated bandwidth. In case

of multiple connections on one node, the bandwidth of the node has to be utilized

efficiently so that multiple dedicated links are possible. The topology module

decides any new connection only after considering the total bandwidth utilization

• Duration of Line of Sight between two nodes. The nodes establish connection

only if they have Line of Sight with each other as per the emulation scenario. The

duration of LOS is an important factor in deciding the connections. A longer

duration indicates a longer dedicated connection, which allows the satellites to

route more data on the connection.

The connection decisions for the scenario are based on the routing tables and are

conveyed to the Emulation Manager. The emulation manager conveys the routing

information to the rest of the nodes.

 35

2.2.6.2 Node Program Software

Figure 6 shows the details of the Node Program Software.

Fig 6: SBI Node Software Modules

The SBI nodes receive the routing and scheduling information from the Emulation

Manager to the Node Software module. On the basis of routing information, it

decides on the connections and then conveys to the Emulation Manager to actually

create or remove the connections on the managed Ethernet switch.

The Instrument Scheduling module receives the instrument-scheduling commands

from the Emulation Manager. The actual satellite instrument data is emulated on the

Ethernet connection between the nodes. The scheduling commands for the nodes

prompt the node- instruments to turn ON and enable the transmission of the

instrument data through the virtual Ethernet connections. The instruments on the relay

 36

satellite (which are virtual Ethernet connections in the emulation world) have to

remain activated continuously since they relay data from different satellites or ground

stations. Incase of Data Source and Relay satellites, some of the instruments are

dedicated to data collection. These instruments collect data periodically and so they

need to be turned ON only at the time of data collection.

In the emulation system, instrument data is modeled as NetSpec [9]scripts. NetSpec

emulates different types of satellite traffic through the scripts and runs those scripts as

per the configuration of the nodes. So NetSpec data traffic along the communication

links emulates actual satellite transmission in the emulation system.

 37

Chapter 3

3 Virtual Ethernet

The previous chapter provided the background necessary for understanding the details

of communication emulation between the nodes in the SBI system. The

communication in an actual satellite system is established on a transmission link

between the transmitter and the receiver antennas. Each antenna beam can be divided

into different channels facilitating multiple connections to the satellites. In the SBI

emulation system, the transmission link is emulated as an IP over Ethernet connection

between two emulation nodes. In order to have multiple connections from a single

node, each node would require multiple Ethernet interfaces. To eliminate the need

for several physical Ethernet interfaces, virtual Ethernet (VETH) devices can be

created on a single physical Ethernet device.

This chapter initially lists the requirements for the implementation of the VETH

devices and explains the user-level control program written to create and configure

the devices. The later sections of the chapter cover the implementation details of

Virtual Ethernet.

3.1 Requirements for VETH Layer
Virtual Ethernet devices are Linux kernel level abstraction for the operating system,

which considers these devices as actual network devices[10]. Each virtual Ethernet

device emulates a satellite communication channel. The communication link is

emulated as a connection between two virtual devices.

• Virtual devices implement the same functionality as the physical Ethernet

devices. These devices are created through software code and should be

transparent to the other layers of the Linux kernel. The virtual devices are

implemented on the top of physical Ethernet but they do not perform any

 38

processing on the data traffic. They create a virtual Ethernet layer between the

network layer (IP layer) and the physical Ethernet layer.

• Each virtual device has an IP address and a unique 6-byte Medium Access Control

(MAC) address, which is different from the underlying physical device. The first 3

bytes represent the vendor portion, which is the ITTC vendor ID. The remaining 3

bytes of the MAC address are unique for each virtual device. Figure 7 represents

the MAC address representation of the virtual devices.

Fig 7: Mac Address Representation for the Virtual Devices

The ITTC vendor ID is 00:04:86. The idea of having our own vendor ID was that

the packets meant for SBI network would have Source and the destination MAC

addresses having the ITTC Vendor ID. This would help in differentiating packets

that are not meant for SBI network. The traffic meant for SBI network would pass

through the VETH layer before going to the IP layer, while the other IP traffic

would by-pass the VETH layer.

 39

• Network Communication through the SBI network:

Transmission of packets from the VETH device

The SBI network has the Virtual Ethernet (VETH) layer between the IP and the

physical Ethernet layer. The network traffic from the IP layer is transmitted to the

VETH devices before transmission to the physical device layer. The virtual

devices provide Constant Bit Rate Service to the transmitted packets and

introduce propagation delay during packet transmission to the physical layer.

Reception of packets on the VETH device

The VETH device receives the data packets sent above by the physical Ethernet

device. The packets meant for the SBI network are de-multiplexed to the right

virtual device on the basis of the destination MAC address. The packets not

generated by the SBI network should have the MAC address of the physical

Ethernet device. The virtual devices send the packets to the IP layer.

• These virtual devices can be created and configured through a user-level control

program by ioctl() system calls to the Linux Kernel. Ioctl() calls allow the user

to access the kernel implementations and insert the Virtual Ethernet layer in

between the IP and the physical layer without modifying the existing Kernel

structure.

 40

3.2 VETH Architecture
VETH devices appear to the higher layers of the Linux kernel as hardware devices. In

reality, these devices are created and configured by a software code at the user-level.

The method by which the devices insert themselves between the IP and the Physical

device layer is simple. For the Linux Kernel, the device is constructed as a C

structure. The fields of struct device store information relevant to the VETH device

and the function pointers can be set to point to the appropriate functions for device

operations.

To create the VETH device, the user-level ioctl () call creates an instance of the struct

device C structure and registers the device with the kernel. This is similar to how

physical devices are registered on kernel boot up. During kernel boot, the device

drivers (for the physical devices) probe the PCI (or ISA) bus for devices [10]. Once

the devices are found, they allocate and initialize the fields of the struct device

structure for these devices and assign the appropriate function pointers. These devices

are then registered with the appropriate kernel entity.

The insertion of the Virtual Ethernet layer shouldn’t affect the operation of the

physical network hardware. This layer is transparent to the traffic not meant for the

SBI network. The struct device structure has function pointers for device operations

such as open, close, send, receive etc. Since each of the virtual devices have the struct

device structure, these function pointers can be set to the appropriate functions in the

VETH layer without affecting the existing framework of the Linux kernel.

The Linux Kernel also provides ability to divert the SBI traffic coming from the IP

layer during transmission or from the physical Ethernet layer during reception to the

Virtual devices. The transmitted packets from the IP layer do not have to be

multiplexed as the packets contain the name of the device on which to transmit. But

the SBI packets that are received on the physical layer have to be routed to the correct

 41

virtual device before the IP layer, which requires a multiplexing and de-multiplexing

mechanism at the physical layer.

The virtual Ethernet devices implement the functionality of the physical Ethernet

devices and so these devices appear as physical devices to the higher layers.

The next section talks about the user-level control program before describing the

implementation details. The control program is responsible for creating and

configuring the virtual devices.

3.3 VETH Control Program
The user-level control program creates and deletes the virtual Ethernet devices. The

control program allows per-instance user-level configuration of these devices and

implement the Ethernet functionality in them. Since the VETH devices exhibit the

same properties as physical Ethernet devices, they can be also configured by ifconfig.

Fig 8 explains the layers for the SBI network and the interface between the user and

the Linux kernel for implementing the Virtual Ethernet Layer. The VETH layer is a

insertion between the IP and the physical layer. The network traffic generated from

the SBI nodes passes through the VETH layer. Since the communication protocol is

IP, the virtual devices receive the traffic from the IP layer. The traffic that is not

meant for the SBI network does not go through the Virtual devices.

There are two types of user controls for the VETH layer:

• The control program vethctl – to create and destroy the devices.

• ifconfig - To configure the devices.

The control program configures the virtual devices while the ifconfig command can

be used to set the network properties for the device.

 42

Fig 8: SBI Network Layers and Controls

3.3.1 Ioctl () system call

The control program is responsible for creating the Virtual Ethernet Layer using the

ioctl () system call. The ioctl call allows per-instance configuration of each device

and registers the device with the kernel [10]. The control program creates an INET

Socket for the ioctl system calls.

if((ioctl_fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0){

 fprintf(stderr, "\n Error in creating a Unix socket %s

\n", strerror(errno));

 exit(1);

 }

The control program provides three options to control the devices. The 3 options are:

• Create Option

 43

• Delete Option

• List Option

These options are command line based and perform operations as specified by the

command option.

3.3.2 Create Option

The ‘create' option creates an instance of the virtual device. The virtual devices

created are numbered sequentially and are named as vethN, where N stands for the

interface number.

The syntax for creating the VETH devices is:

Vethctl –c <physical device name> <source MAC address>

 Where,

-c: create option

Physical device name: Name of the physical Ethernet

Device Ex: eth0

Source MAC address: 6-byte MAC address for the

 Virtual device

Ex: 00:04:86:00:00:01

This option initiates an ioctl() call to the Linux kernel relating to this operation. The

appropriate function at the VETH layer is called to create the devices. The interface

number assigned to the device is incremented, starting from ‘0’ as the devices are

created. An example for creating a virtual device is provided in APPENDIX A.

Some important conditions to be checked while creating the devices:

• The validity of the underlying physical device should be checked.

• The MAC address at the command line should have the first 3 bytes (vendor ID)

equal to the ITTC vendor ID. (00:04:86).

 44

The ‘create’ option returns the name of the interface created. Ex: veth0.

3.3.3 Destroy Option

The ‘destroy’ option deletes the virtual interface specified by the argument. The

virtual device is a piece of software inserted in the Linux kernel. So when the virtual

device is destroyed, the memory occupied by the device has to be released.

The syntax for destroying a VETH device is:

Vethctl –d <VETH interface number>

 Where,

 -d: destroy option

 VETH Interface Number: The interface number of the

Virtual Device to be

deleted.

The validity of the virtual device is checked before deleting the interface. An

Example is provided in APPENDIX A.

3.3.4 List Option

The ‘list’ option provides information on the virtual devices that are created. The

information includes the names of the virtual devices and the underlying physical

devices. An example is provided in APPENDIX A.

The syntax for the ‘list’ option is :
Vethctl –l

 Where,

 -l: list option

3.3.5 Ifconfig commands

‘ifconfig’ command is used for configuring the virtual devices. Some of the

important device properties configured through ‘ifconfig’:

 45

• IP address of the VETH device

• Netmask for the VETH device

• Size of Maximum Transmission Unit (MTU)

• Setting the device flags for multicast, promiscuity, broadcast etc.

The details of the implementation of the VETH layer are covered in the next section

3.4 Implementation of the VETH layer
Virtual devices are implemented in the Linux kernel as pseudo device drivers.

Through this implementation, with a single physical network device, the system can

emulate network traffic on an unlimited number of virtual network devices. These

devices have to be created on top of the physical network device. The current

implementation supports virtual Ethernet devices over physical Ethernet.

3.4.1 VETH Top Level Design

The main function of the VETH layer is to facilitate multiple connections on a single

physical Ethernet device. Each virtual device has a C structure associated with it,

which stores information relating to the virtual device. Program 3.1 refers to the

veth_device structure, which is instantiated for each device. It contains information

about the device name, interface number, the source MAC address and information

about the physical network device. It also contains struct device, which is the kernel

structure for representing a network device and whose function pointers can be set

according to the requirements of the VETH devices.

When the virtual device is created, the contents of this structure are filled as well as

the device structure pointed by vethDev. The veth_stats keep statistics of the packets

flow through the VETH device. The information about the underlying physical device

is stored in a structure phy_device. Program 3.2 explains the details of both the

structures.

 46

Program 3.1:The Virtual Ethernet Device structure

struct veth_device {

 char name[5]; /* Name of the device (veth0)
 char phyDevName[5]; /* Name of the physical device
 int itfNum; /* Interface Number

struct device *vethDev; /* Device structure associated
/* with the virtual device
/* Ex – veth0

 char srcMac[6]; /* Source Mac address
 struct veth_stats *nwStats;/* VETH device statistics

 unsigned long vdevCreate ; /* this flag is set when the
 /* Virtual devices created.

struct veth_device *next;

}

 47

The packets coming on the physical Ethernet device have to go through the virtual

device before going to the IP layer. The packets queued in the net bottom half after

coming on the hardware device are checked for their packet_type fields. If the

packet_type is IP then the ‘receive’ function for the IP layer is called. But the VETH

devices intercept the packets going to the IP layer by changing the pointer of the

‘receive’ function for the IP packet_type. The func pointer, which contains the ip_rcv

function for the IP packet_type is changed to the ‘receive’ function of the VETH

device. The original function is stored in the ‘pdev_recv’ function pointer. The

Program 3.2: The veth_stats and phy_device structures for the VETH devices

struct veth_stats { /* statistics for the VETH device
 int tx_sent;
 int tx_dropped;
 int rx_sent;
 int rx_dropped;
}

struct phy_device {

char phyDevName[5]; /* name of the physical device
/* Ex –eth0

 int num_vethdev; /* Number of virtual devices
/* on the physical device.

 int (*change_mtu)(struct device *dev, int new_mtu);

/* A pointer to store dev-
>change_mtu /* pointer for the
physical device

int (*pdev_recv) (struct sk_buff* , struct device* ,

 struct packet_type*);
/* Function pointer pointing to
/* ‘Receive’ function of the IP
layer

struct phy_device *next;

}

 48

original pointer is restored back when the virtual devices on the underlying physical

device are deleted. Similarly, the ‘change_mtu’ function stores the function pointer

for dev->change_mtu for a physical device. This is explained in Program 3.2.

The virtual devices provide CBR service to the packets and also introduce

propagation delay in the ‘send’ function of the VETH device before the packets are

transmitted on the physical device.

The VETH device also has the Kernel device structure and the contents of this

structure are initialized when the device is registered with the kernel. The VETH

device function pointers such as hard_start_xmit, init etc point to the functions

implemented in the VETH layer.

The following functions are associated with the VETH layer, the details of which will

be explained in the next section:

• Veth_ioctl:

This function receives the ioctl calls from the user-level and based on the type of

the ioctl call, it invokes the appropriate function in the VETH layer. The ioctl call

can be of three types: create, destroy or list.

• Veth_create:

This function creates the virtual devices, each having a unique interface number

and a unique MAC address.

• Veth_init:

This function sets the function pointers of struct device for the VETH device.

 49

• Veth_destroy:

This function responds to the ioctl call for deleting a virtual device. It frees the

memory occupied by the virtual device to be destroyed.

• Veth_send:

This function receives packets from the IP layer and sends it to the physical layer.

Before transmission, the packets are subjected to CBR service and a propagation

delay equal to the delay on the satellite link.

• Veth_receive:

This function receives packets from the physical Ethernet layer and sends it up to

the IP layer. The packets are de-multiplexed to the right VETH device in the net

bottom half queue of the Linux kernel.

• Veth_change_mtu

This function changes the MTU of the VETH device. This function is invoked

when ifconfig is called to change the MTU of the device.

3.4.2 VETH Detailed Design

The Virtual Ethernet layer is a software layer between the IP and the physical device layer.

The virtual devices can be created and configured by different functions of this software

layer. This section provides a detailed description of the different functions of the VETH

layer, responsible for the functioning of the virtual devices.

3.4.2.1 Ioctl calls from the Control Program

The function veth_ioctl is executed in response to the ioctl () call made by the

Control program. The control program makes three requests to the ioctl function:

• VETH_CREATE_VDEV -- To create the virtual devices.

• VETH_DESTROY_VDEV— To destroy the virtual devices

• VETH_LIST_VDEV-- To list the properties

 50

Based on these requests, the veth_ioctl() function invokes the different functions of

the VETH layer. The parameters passed by the control program are in the form of a

structure. The fields of the structure represent the arguments of the control program

for all the options. Program 3.3 represents the contents of the structure.

3.4.2.2 Creating a VETH device

The function veth_create () is called from veth_ioctl() in response to the

VETH_CREATE_VDEV ioctl request. This function takes the following arguments:

• Physical device on which the virtual device has to be created.

• The source MAC address of the virtual device.

The first 3 bytes of the MAC address represents the ITTC KU vendor Id (00:04:86).

The interface number assigned to the device is sequentially incremented, starting

from 0. After the device interface is created, it is added to dev_base, which is an

internal linked list in the Linux kernel to keep track of all the devices. This interface

is also added to veth_base, which is a linked list at the VETH layer to maintain

information of all the virtual devices created.

The virtual device keeps track of its underlying physical device (eth interface) by

storing the name of the physical device in one of the fields of the veth_device

Program 3.3: Structure veth_req for passing arguments to the ioctl () call

Struct veth_req {
 Char PhyDev[5]; /* name of the physical device,

 /* Ex : eth0
 Int itf; /* The interface number for VETH

 /* device
 Unsigned char srcMac[20]; /* Source MAC address
}

 51

structure. The device structure related to the physical device can be obtained by this

pseudo-code:

Physical_device = dev->get(veth_device->phyDevName)

The phy_device structure mentioned in Program 3.2 keeps track of the list of physical

devices and the number of virtual devices that are created on each physical device.

The device flag vdevCreate in struct veth_device should be set to indicate that the

virtual device is created. The device created should be registered as a network device

by calling register_netdev (). This function adds the devices to dev_base list and also

calls the veth_init function to initialize the function pointers of the struct device for

the VETH device.

Return Value:

Incase, the virtual device is successfully created and initialized, then veth_create

returns the interface number of the device as a return value to the control program.

Otherwise a negative value is returned, in case of error. The control program on

receiving the interface value appends it to “veth” and prints the name of the device on

the screen. An example of the output incase of successful creation of interface 0 is:
Veth0 device created successfully

3.4.2.3 Initializing a VETH device

The fields of the veth_device structure are initialized in the veth_create () function,

but the function pointers for the device structure related to the virtual device are

initialized in veth_init (). The function pointers for the struct device point to the

respective functions of the VETH layer. An example pseudo-code for initializing the

function pointers for struct device vethDev of the Virtual Device is listed in Program

3.4.

 52

This function also checks whether the veth_device->vdevCreate flag is set or not.

The Linux kernel stores the list of devices having the IP packet types in a variable

ptype_base. The packet type definitions contain a func pointer, which points to the

receive() function in the IP layer. That pointer has to be changed to point to the

Virtual Ethernet device receive () function. In case the veth_device->vdevCreate flag

is set then it searches for all the packet types whose device structure points to the

physical device on which the virtual device is created. For all those devices, the

packet_type->func pointer has to be changed from ip_rcv() to veth_recv (), which is

the receive function for the virtual devices. Before changing the func pointer, the

original pointer to the IP receive function is stored in phy_device->pdev_recv

function pointer for each physical device. Program 3.5 states the pseudo-code for

implementing the change in function pointers.

Program 3.4: Pseudo-code for veth_init function

 vethDev->open = NULL;
 vethDev->stop = NULL;
 vethDev->hard_start_xmit = &veth_send; /*Transmit Function
 vethDev->mtu = 1500;
 vethDev->hard_header_len = 0;
 vethDev->addr_len = MAC_LENGTH;
 vethDev->change_mtu = &veth_change_mtu;
 vethDev->set_mac_address = &veth_set_mac_address;
 vethDev->type = ARPHRD_ETHER; /* Ethernet Type
 vethDev->get_stats = &vethDev_get_stats;
 vethDev->flags = 0;
 vethDev->qdisc = NULL;
 vethDev->qdisc_list = NULL;

 53

This initializes the packet_type-> func pointer. It points to the veth_recv function for

the VETH device and the packets, meant for the SBI network, coming on the device

driver shall pass through veth_recv function before calling ip_rcv.

Return Value:

If all the fields get initialized, then the function returns a positive value.

3.4.2.4 Sending Data on the VETH device:

The data traffic has to be routed from the IP layer to the VETH layer before passing it

onto the hardware layer. The VETH device does bandwidth limiting and introduces a

propagation delay before transmitting the packets. The bandwidth limitation on the

connection emulates the satellite transmission link with reserved bandwidth. In the

Linux kernel, bandwidth on a link can be limited by implementing Quality of Service

(QoS) algorithms for traffic control. QoS in Linux implements different queuing

disciplines to provide traffic control. The device structure has the provision for

Program 3.5: Pseudo-code for changing “packet_type->func” pointer

(for packet_type = ptype_base[ETH_P_IP];

packet_type != NULL; packet_type->next)

{
 if (packet_type->dev == phy_device->dev) {

/* Replace the packet_type->func with veth_recv
function but before that put the original function pointer
in our phy_device->pdev_recv function pointer. We might
need this back. */

 phy_device->pdev_recv = ptype->func;
 packet_type->func = veth_recv ;

}

 54

implementing the required specific queuing discipline. The packets coming to the

VETH layer are queued according to the queuing discipline specified.

The queuing discipline is specified in the struct Qdisc of struct device. The queuing

discipline can be specified by the Traffic Control (tc). The details of achieving

bandwidth limitation are explained in the next chapter.

The packet flow from the application layer to the physical device layer through

VETH device is as follows:

The Linux kernel socket implementation routes the data traffic from the application

layer through a write ()system call onto the Transport layer and then onto the

Network Layer. The network layer for SBI network is the IP layer. The packets from

the IP layer call the transmit function for the VETH device and not the physical

device.

The packet flow from the IP to the physical device layer is as follows:

The ip_queue_xmit () is the transmit function in the IP layer which calls

dev_queue_xmit (), which is a generic function for all the devices. The arguments

passed to dev_queue_xmit() are the packet contents and the device structure for the

VETH device. The struct Qdisc field of the device structure implements the queuing

discipline for providing bandwidth limitation. The dev_queue_xmit function calls the

enqueue function to queue the packets according to the specific queuing discipline.

The scheduler implements a qdisc_wakeup () routine to dequeue the packets and call

veth_send to transmit the packets to the VETH layer. After the packets come to the

VETH layer, the packets are delayed by a specified value. The specified value

represents the value of propagation delay on the communication link. The network

statistics for the number of packets transmitted is incremented in the veth_send ().

Finally, the packets call dev->hard_start_xmit(), where dev represents the device

structure for the physical device (eth) and the function invokes transmit function of

 55

the physical device. Program 3.6 states the packet flow from the IP to the physical

layer through the VETH layer.

3.4.2.5 Receiving Data on the VETH device

As the packets are received on the physical Ethernet device, they are queued to be

serviced by the network bottom half at a later time. When the bottom half runs, it

checks for the packet type of each received packet and invokes the receive ()

function pointed to by func pointer for the packet type. When the virtual Ethernet

Program 3.6: Packet Flow through the VETH device

 Transmit Function for the IP layer

 Generic Function for all devices. Skb->dev
 Contains the device structure for veth device.

 The veth device enqueues packets according
 to the specific queueing discipline. Performs
 rate limiting.

 After de-queuing the packets, he packets

Are delayed in the VETH layer to simulate
the Link propagation Delay

 After delay, Veth_send calls the transmit
 function for the physical device driver (eth
interface).

vethDev->enqueue
(skb, veth dev-queue)

vethDev->dequeue
(skb,vethDev->queue)

vethDev->hard_start_xmit
(skb, vethDev)

Physical_dev->hard_start_xmit
(skb, dev)

Ip_queue_xmit(skb)

Dev_queue_xmit (skb)

 56

devices are initialized, the func pointer is changed to point to the receive () function

for the virtual device i.e. veth_recv ().

Whenever a packet is received by veth_rcv (), its first duty is to find the virtual

Ethernet device associated with the destination MAC address, which is located in the

header of the received packet. The destination MAC address in the packet header is

compared with the veth_device->srcMac fields of all the virtual devices that are

created on the receiving physical device. Once, the device is found, the function

increments the network statistics for the number of packets received and then calls

ip_rcv () for propagation of the buffer up the IP layer. The arguments passed to the

ip_rcv function are: packet buffer skb, device structure for the VETH device

veth_device->vdev, packet_type.

If the Destination VETH device isn’t found, then the packets are not meant for the

SBI network and they call the function associated with the phy_device->pdev_recv()

function. In this case, the only difference to the arguments of the receive () function

is that instead of the veth device structure, the device structure for the physical device

is passed to the function.

The veth_rcv () function does no processing on the packet and simply forwards the

packets to the higher layers.

3.4.2.6 Deleting a virtual Ethernet device

Veth_destroy() deletes the specified VETH device. This function is called from

veth_ioctl () in response to the VETH_DESTROY_VDEV request.

The argument to this function is the interface number of the VETH device to be

deleted. This function searches through the veth_base list of virtual devices created.

Once the device specified by the argument is found, that device has to be removed

 57

from the veth_base and the dev_base lists. By calling unregister_netdevice(), the

device is removed from the Kernel device list dev_base. Since virtual device is a

software device occupying the kernel memory, veth_destroy () frees the memory

associated with that device.

This function also decrements the phy_device->num_vethDev field when the device is

deleted. If the device to be destroyed is the last virtual device for the underlying

physical device, then the function pointer func for the packet types has to be restored

to the original receive() function, which is ip_rcv ().

(For ptype = ptype_base[ETH_P_IP]; ptype !=NULL; ptype->next)

{

 if (ptype->dev == phy_device->phyDev)

 /* Restoring the original pointer of ptype->func */

 ptype->func = phy_device->pdev_recv;

}

Return Value:

In case the device is destroyed successfully, the function returns a zero value. The

following message shall be printed on the screen if veth0 has to be deleted:
 Veth0 destroyed successfully

3.4.2.7 Changing the MTU on the virtual Ethernet device

The function veth_change_mtu () of the virtual device is invoked when the ifconfig

command is called to change the MTU of the VETH device. During initialization, the

function pointer dev->change_mtu is set to this function, where dev represents the

device structure for the virtual device. The MTU of the virtual device can be less or

equal to the MTU of the underlying physical device.

 58

Chapter 4

4 Constant Bit Rate Service

The previous chapter described requirements and design for constructing the medium

for Ethernet communication between two SBI nodes i.e. the Virtual Ethernet Layer

(VETH). The VETH layer creates and configures the virtual devices and the

connection between the two VETH devices represents the satellite communication

link. One of the features of the satellite communication link is providing Constant Bit

Rate service (CBR). CBR control provides continuous and dedicated link rate for the

established connection. This type of service is useful for transmission of voice, video

and data traffic, which requires consistent bandwidth for transmission. CBR service

can be provided in Linux by implementing rate limiting. Rate limitation can be

implemented by some of the Quality of Service mechanisms like Token Bucket Filter

(TBF). QoS disciplines are a part of the traffic control mechanism in Linux.

4.1 Traffic Control In Linux
Linux kernel offers a wide variety of traffic control functions. Incoming packets are

examined at the network layer (IP). In case the packets are meant for that node, they

are forwarded to the higher layers of the protocol stack for further processing or they

are directly forwarded to the network on a different interface. The higher layers also

generate data on their own and send them to the lower layers for transmission. The

packets that are to be sent out on the output interface for transmission are queued at

the respective interface. Traffic control plays an important role here in “queuing” the

packets. The traffic control mechanisms can decide if the packets are to be queued or

dropped. It can also assign the order in which the packets are sent by prioritizing the

packet flows and can also limit the rate of the outbound traffic.

 59

4.1.1 Overview

Traffic control mechanisms provided by Linux, control the flow of packets on a

particular device. There are four major components to the traffic control code in

Linux kernel:

• Queuing Disciplines

• Classes (within the queuing discipline)

• Filters

• Policing

Each network device has a queuing discipline associated with it, which controls the

transmission of the enqueued packets on the device. A very simple queuing discipline

would be a First In First Out (FIFO) queue. FIFO queuing discipline consists of a

single queue, which de-queues the packets in the order in which they are queued.

Some of the more complicated queuing disciplines have different classes [11]to store

the different types of packets. The packets arriving to these queues have to be

classified to these different classes by filters [11]. Assigning priority to the classes

makes it easier to multiplex the traffic of different classes onto the network device.

The traffic flow also implements policing [11]by discarding packets, which exceed a

certain rate.

The device structure for each network device has a pointer to struct Qdisc, which

references the queuing discipline and its function pointers for that device. When the

enqueue function of the queuing discipline is called, it runs the filters one after the

other to classify the packet to the class. In case, the queue has no classes, the packets

are enqueued in the single queue as per the Queuing discipline specified. If the

Queuing discipline has classes, then the packets after classification are queued inside

the corresponding class by calling the enqueue function for the Queuing Discipline

“owned” by that class. Usually, when the packets are enqueued, the corresponding

 60

flow can be policed, e.g. by discarding packets which exceed a certain rate or shaped,

e.g. by limiting the rate for the outgoing link.

4.1.2 Queuing Disciplines

Each queuing discipline provides set of functions to control its operation. The struct

Qdisc has function pointers to enqueue, dequeue, requeue, drop, initialize, reset and

destroy a queuing discipline [11].

In Linux, the packet is enqueued on an interface by calling dev_queue_xmit()

function. This function calls the enqueue () function associated with the queuing

discipline for that device. The queuing discipline can be attached to the device

through struct Qdisc pointer in the struct device. If the queuing discipline has classes,

then the packet might be classified to different classes and queued inside the class

queue. Finally, qdisc_wakeup() function is called to send the packet on the device

interface. The qdisc_wakeup () calls qdisc_restart () which is the main function to

poll the queuing disciplines and send the packets on the device driver. This function

calls the dequeue () function for the packet and invokes the hard_start_transmit()

function for the device to transmit the packet.

4.1.3 Classes

Classes represent the medium for differentiating packets for multiple traffic flows.

Each class has got its unique identifier and is attached to the root queuing discipline.

Classes implement their “own” queuing disciplines, which in turn can create classes

and so on.

The various function pointers for each class are stored in struct Qdisc_class_ops,

which is attached to the struct Qdisc of the parent queuing discipline.

 61

4.1.4 Filters

Filters are used by the queuing disciplines to assign the incoming packets to their

respective classes. Each filter has a unique identifier and is attached to the parent

queuing discipline. Filters are controlled via the function pointers in struct

tcf_proto_ops in the Linux kernel. There are function pointers to classify, initialize &

destroy the filters. Filters vary in the scope of packets their instances can classify.

Some filters have one instance per queuing discipline to classify packets for all

classes. These filters are generic [12]. The other type of filters is specific, [12] which

need more than one instance per queuing discipline to classify the packets.

4.2 CBR Control for SBI Emulation System
This section describes the requirements for implementing CBR control on the SBI

connections and the use of Linux Traffic Control mechanisms to implement the same.

4.2.1 Requirements for CBR Control in SBI

In a SBI system, each SBI node is capable of handling different types of data traffic,

example: Telemetry, Observational Data etc. The SBI data traffic models the actual

data collected by the satellites and relayed to other satellites and ground stations. The

nature of the data traffic through the SBI emulation nodes might be continuous or

periodic. The SBI nodes representing the relay satellites transmit and receive data

continuously, while the nodes emulating the observational satellites have some links

dedicated for data collection and some links for relaying data. The ground station

nodes act as destinations to receive data traffic and also as relay stations to route data

to other nodes.

The SBI node should be able to utilize the node bandwidth efficiently for transmitting

and receiving different types of data. The node has multiple connections through its

virtual devices. Each link should have dedicated bandwidth for transmitting data

 62

traffic and this can be implemented by rate limitation mechanisms on the link,

provided in Linux kernel.

The Linux Kernel implements traffic control mechanisms through Quality of Service

queuing disciplines. One such discipline is Token Bucket Filter (TBF)[13]

mechanism, which provides rate limiting on the connection. In case of multiple

traffic flows through the same link, the Class Based Queuing (CBQ)[16] can be

applied to the virtual device. CBQ creates classes for different flows.

4.2.2 CBR Control Mechanism

CBR control can be provided at each SBI node by TBF queuing mechanism. Each

virtual Ethernet device implements TBF queue. The parameters for creating the queue

will be specified by a utility called as “tc”, which stands for Traffic Control. The

details of the TBF mechanism are explained in the next section.

Each link has a certain data rate. The relay satellites have high data rates, while the

data source satellites have low data rates. According to the type of entity, the SBI

node represents the link rate shall be limited by TBF mechanism. In case of multiple

connections through the same node, the link rates shall be allocated as per the

requirements, with the sum of the total link rates not exceeding the available

bandwidth on the node. In case of any new link connection, the bandwidth for that

link will be assigned after considering the current bandwidth utilization and the

bandwidth requirements for the new connection.

In case of multiple connections through the nodes, then device implements Class

Based Queuing (CBQ). CBQ creates classes for different traffic flows. Filters such as

U32 filters are used to classify the packets to different classes on the basis of different

destination and source IP addresses. The details of CBQ and U32 filters are

explained in the later sections.

 63

4.3 Token Bucket Filter (TBF)
4.3.1 TBF Mechanism

Token Bucket Flow (TBF) passes packets arriving at rate in bounds of some

administratively set limit. The TBF implementation consists of a buffer (bucket),

constantly filled with virtual pieces of information called tokens, at a specific rate

(token rate). The most importance parameter of the bucket is its size, that is the

number of tokens it can store.

Each arriving token lets one incoming data packet out of the queue and is then

removed from the bucket. There are three possible scenarios with different values of

the token generation rate and the incoming data rate:

• The data packets arrive into TBF queue at a rate equal to the rate of the incoming

tokens. In this case each incoming packet will have a token and so will not be

delayed for transmission.

• The data packets arrive at a rate smaller than the token rate. So a fewer tokens

will be removed from the bucket with the packets. This would lead to

accumulation of tokens up to the bucket size. The saved tokens could be used to

send data over the token rate, if short data burst occurs.

• The data arrives into TBF at a rate bigger than the token rate. In this case, the data

packets can be sent only until all the tokens accumulated in the bucket are used.

After that, over limit packets are dropped.

The last scenario is important because it allows shaping of the bandwidth available to

the data packets. Shaping the bandwidth causes the link bandwidth to be limited to a

particular rate.

 64

4.3.2 Linux TBF Queuing Discipline

 There are three basic parameters for each TBF queuing discipline:

• Rate – The rate at which the tokens are generated in the bucket. The rate

represents the average transmission rate for a traffic flow.

• Bucket size or Burst Size -- The number of tokens that the token bucket can store.

Every token is equivalent to one byte.

• Limit—Limit represents the sum of the queue size and the bucket size.

The limit parameter for the TBF decides whether the packets should be policed or

shaped. If the limit is equal to the bucket size the queue size is zero and the over limit

packets are dropped. This polices the data stream. If the limit is greater than the

bucket size, the over limit packets are queued, which shapes the stream. Therefore,

the Linux TBF queuing discipline is a meter, shaper and policer, all in one.

4.4 Class Based Queuing
Class Based Queuing (CBQ) [16]discipline is used to limit the outgoing bandwidth on

the link. It provides a very flexible and efficient approach to first classifying the user

traffic and then assigning bandwidth characteristics to each traffic class. Each class

represents an individual traffic flow on the device. Each traffic class can be assigned

a committed bandwidth rate, which is a part of the total bandwidth allocated on the

device. The link rate for each class can be fixed i.e. bounded or flexible, which means

that the link can borrow bandwidth from its parent class or queuing discipline.

Whenever the packets arrive at the root queue, they are classified. If the traffic class

hasn’t used all of its bandwidth i.e. the class is under limit, the packet flows

immediately to the outbound link and no rate limiting is required. But if the class is

over limit, then the packet is placed in its queue and is rate shaped onto the outbound

 65

link. The packet might be allowed to “borrow” from the parent bandwidth if the class

to which the packet is classified is not “bounded”.

4.5 U32 Classifier
The U32 classifier [12]is the most advanced filter available in the current

implementation of filters. The U32 classifier contains 2 fields: a selector and an

action. The selectors try to match the packets according to the different fields of the

packet header. It performs certain actions once the packet matches to the selector

criteria. One of the actions is to direct the packet to its associated class after

classification.

The U32 selectors define the pattern to match the packet contents with the mask and

the offset for the start of the pattern matching. The pattern mostly consists of the

fields in the packet header, which classify the packets. The fields might be of the

Protocol layer header such as IP header or the Transport Layer header, which is the

TCP/UDP header. Some of the patterns used for matching are:

• Destination IP address

• Source IP address

• Source, Destination Port.

4.6 “tc” Utilty
“tc” [14]stands for Traffic Controller, which is a user level program to create and

associate queues with the output devices. It can be used to set up various queues and

associate classes with each of those queues. It also configures the filters for

classifying the packets into the classes. The usage for “tc” [15] is:
 tc [OPTIONS] OBJECT {COMMAND | help}

 where, OBJECT := { qdisc | class | filter }

 OPTIONS := { -s [statistics] | -d [details] |

 -r [raw] }

 66

The Object could be queuing discipline, class or a filter.

4.6.1 Interface between the user and the Linux kernel

The interface for the “tc” utility between the user and the Linux kernel traffic

elements is achieved using netlink sockets [12]. The interface information is specified

in the files pkt_cls.h and pkt_sched.h inside the Linux kernel. Rtnetlink, which is

based on netlink is used to exchange the traffic control objects between the user level

and the kernel level. The netlink sockets use struct sockaddr_nl address structure,

which is used by the user level code to communicate with the kernel. Whenever the

“tc” command is executed for a specific action, a sendto is done on the netlink

socket. The rtnetlink_rcv_msg function in rtnetlink.c receives the message from the

user space. It examines the message header to determine the message type.

Depending on the message type, the corresponding function is invoked.

4.7 CBR control in SBI Emulation System
The Communication Emulation unit, which is a part of the SBI emulation software on

the SBI nodes, creates the Virtual Ethernet devices to connect to the other SBI nodes.

The control program module for configuring the VETH layer is a part of the

Communication Control Unit. The Communication Control unit also hosts the

“Traffic Control (tc)“ utility, which configures the traffic control modules in the

Linux Kernel.

A communication link represents an IP over Ethernet connection between two virtual

Ethernet devices. The link rate represents the data rate of the satellite that is

transmitting traffic. The data rate capacity of the link can be limited to the required

data rate by using Token Bucket Filter (TBF) queuing mechanism. The tc utility is

loaded on the SBI nodes and is a part of the Communication Control Module and

configures the parameters of the Queuing disciplines for each of the virtual devices.

 67

The parameters for each of the virtual devices are passed from the Operations Node

via the Emulation Manager.

Quality of Service can also be provided at each link by the traffic control disciplines.

QoS service deals with classification of different data traffic into different classes

inside the queue implemented for the communication link. The Linux scheduler

schedules the transmission of packets from these different classes depending on the

importance of the data classified.

Figure 9 shows the interaction between the Emulation Modules for setting the CBR

control on each link. The emulation manager receives the QoS parameters regarding

the Queuing discipline and the data rate values from the Operations Node.

Fig 9: SBI Node Controls for providing CBR service

 68

The veth_controller module creates and configures the virtual devices and the traffic

controller module executes the “tc” command through the netlink sockets to set up

the CBR control on the virtual device.

The parameters received from the Emulation Manager are passed to the Traffic

Controller module. The traffic controller module attaches the specified queuing

discipline to the virtual device. If the virtual device has just one type of data traffic

flowing through it, then the Queuing discipline need not have classes and can

implement a single Token Bucket Filter through it. In case the virtual device is

handling different types of data traffic, Example the relay satellites, then Class Based

Queuing has to be implemented and packets have to be classified by filters. Each of

the class queues would then implement a Token Bucket Filter Queuing Discipline,

which would provide CBR control as per the specifications. The details of providing

CBR control for a VETH devices with or without Class Based Queuing are explained

in the next section.

4.7.1 Example Scenario for CBR Control

To demonstrate the CBR control for the SBI system, a scenario is designed which

takes into account all the different types of nodes in the SBI system. The CBR

control for each link depends upon the amount of data traffic handled by that node.

The need for differentiating traffic into classes arises if a node is handling different

types of traffic with different degrees of importance. Figure 10 shows a probable SBI

scenario, which provides CBR Control on the links.

 69

Fig 10: SBI System Scenario implementing CBR Control

Nodes A and B represent observational satellites and the links, which are dedicated to

data collection and transmission to the ground stations or other satellites. These links

do not relay data from one node to other. These links just have one type of traffic

flow through them and so they implement CBR control without Class Based Queuing.

 Nodes C and D represent ground stations, which receive the observational data from

the satellites A and B via the router satellites. The ground station nodes are the

destination nodes in this scenario and don’t implement CBR control

Nodes X and Node Y represent the High data rate Relay satellites, which relay data

for different destinations. Node X has traffic for different destinations through its link

from X to Y. Node X implements CBR control with Class Based Queuing with

classes created for different destinations. Node Y has two separate links for the 2

destinations and so doesn’t create classes for the link. In case, there were multiple

data flows through Node Y on the same link, then classes would have to be created.

 70

4.7.2 CBR control without Class Bases Queuing (CBQ)

Consider data traffic flow from node A to node X. The virtual devices on both the

nodes form a connection link. The link rate on this connection has to be equal to the

data rate of the transmitting node. The link rate can be limited to the required value

by implementing TBF queuing discipline.

Each node receives its QoS parameters from the Operations Node via the Emulation

Manager. The Operations node decides on the routing tables for each of the nodes.

The routing tables denote the destination and the gateway IP addresses and the virtual

device on which to send the traffic. In case of a single traffic flow through a virtual

device, there would be only one route associated with that device. The Operations

node decides on the link rate for that device connection and then sends the parameters

accordingly to the Emulation Manager. The Emulation Manager transmits the

parameters to the node, which sets the TBF queue according to the parameters.

For Example, if the connection from virtual device veth1 of Node X to veth2 of Node

A has to be limited to around 450kbps, then the tc command would look like:

 tc qdisc add dev veth1 handle 10: root tbf 450kbit

 Burst 450kb/8 limit 450kb

 Where, qdisc = queuing discipline

 Handle = identity for the queuing discipline on

 That node

 Root = specifies that it is a root queue.

 Burst = specifies the size of the largest burst

 Limit = burst + queue size.

The parameters sent by the Operations node to the Traffic controller module:

• Virtual Device on which TBF queue has to be set

 71

• Rate at which the link rates should be limited. This represents the data rate for the

transmitting node. The transmitting node might be a satellite or a ground station

and the rates mean the data rates for these entities. The data rates for the satellites

are obtained from the configuration files on the Emulation Manager.

• Burst Size for the TBF queue, which will be proportional to the link rate.

• Limit represents the sum of the burst size plus the queue size.

The Traffic Controller module on receiving the parameters calls the “tc” utility to

create the TBF queuing discipline for the virtual device.

4.7.3 CBR Control with Class Based Queuing (CBQ)

CBQ can be created on the device having multiple flows. The criteria for

classification could be traffic flows meant for different destinations and source IP

addresses.

Creating a CBQ discipline for a device requires the configuration of three

components:

• Queues

• Classes

• Filters

The CBQ queuing discipline is the root queue for the virtual device, which creates

classes for different traffic flows. Filters have to be created to classify the packets to

these different classes.

Referring to Figure 10 for the scenario, node X has two different flows from node A

and node B. The flows are meant for different destinations nodes C and D

respectively. So Node X creates a Class based Queuing Discipline for the virtual

 72

device. CBQ has 2 classes for the 2 traffic flows. Packets arriving at the root CBQ

queue are classified according to the destination IP address and the source IP, which

is the physical device on which the packet came. U32 filters can be used to classify

the packets to their classes. The classes can have simple FIFO queues because the rate

limitation for the traffic is done at the node on which the traffic is generated. The

virtual device might be allowed to use the whole bandwidth or it might be allocated

some bandwidth from the total node bandwidth. In this case, the root class for the

CBQ created has to have the rate restricted to the allocated bandwidth.

 Figure 11 illustrates CBR control on the SBI nodes using Class Based Queuing

(CBQ).

Fig 11: SBI Node CBR Control with Class Based Queuing

 73

The Operations Node decides the need for CBQ queuing for the SBI node.

Accordingly, the parameters for the CBQ queue and the parameters for the individual

classes and their queues are passed from the Operations Node to the concerned node

through the Emulation Manager.

The parameters passed by the Operations Node to the SBI node for CBQ:

• The total bandwidth on the virtual device,

• The device name on which to create CBQ.

The parameters for creating classes:

• Root Class attached to the root queuing discipline.

• Data rates for each class

• Individual queuing disciplines for the class: FIFO queuing discipline.

Filters are created for each class. The filters implemented at the root of the CBQ

classify the packets on the basis of the destination address. The filters implemented

are U32 filters.

The parameters passed from the Operations Node for creating the filters:

• The virtual device

• The destination IP address and the source IP addresses.

On receiving the parameters for all the components, the Traffic Controller module

runs the “tc” utility script for the specified virtual device. This utility configures the

CBR control for the device. A complete example is explained in the APPENDIX B.

But a short example is provided below:

Creating a root CBQ queue and CBQ class on device veth1 on

Node X with device bandwidth as 10 Mbps and the root class

bandwidth restricted to 10Mbps.

 74

tc qdisc add dev veth1 root handle 10: cbq bandwidth 10mbit

avpkt 1000 allot 1514 cell 8 mpu 64

tc class add dev veth1 parent 10:0 classid 10:1 cbq bandwidth

10mbit rate 10mbit allot 1514 weight 100kbit prio 2

The first command creates a root queue

Where, avpkt: 1000 bytes

 Allot: the size of the Ethernet MTU plus the

 Ethernet header (14bytes).

 Mpu: minumum number of bytes sent in one packet

 Cell: the boundaries of the bytes in the packets

 Transmitted.

 Rate: the bandwidth allocated to the class

 Bandwidth: Maximum bandwidth available to the

 device

The second command creates a root class attached to the parent

queue. The variable “prio” stands for priority assigned to the

class. Further, within the root class, there would be classes

created for the 2 flows. The entire example is explained in

the APPENDIX B.

 75

Chapter 5

5 Link Propagation Delay

The previous chapter provided explanation for having CBR control on the Emulation

Communication Satellite link. The CBR control limits the rate on the link to the data

rate of the satellite. So the satellites can route their data as they collect, through the

virtual device connections to other satellites and ground stations. Since the distance

between the satellites or satellites and ground stations is very large, the data

transmission on the communication link suffers from very high propagation delays.

On account of high propagation delays, large amount of data would be in-flight on the

transmission link [4].

The Communication Emulation Unit of the SBI System models the features of the

communications links. The last chapter talked about emulating CBR control through

Quality of Service mechanisms. This chapter details out the method for simulating the

propagation delay on the emulation link. The propagation delay is introduced in the

Virtual Ethernet (VETH) layer after the CBR control. The packets are delayed before

being transmitted on the physical device.

The chapter first starts with the requirements for simulating the propagation delay and

proceeds to state the analysis done for calculating propagation delays on some of the

actual satellite transmission links. Based on some of the analysis results, this chapter

further describes the algorithm for simulating the propagation delay at the VETH

layer.

5.1 Requirements for Simulating the Propagation Delay
The Communication Emulation Unit on the SBI nodes emulates the communication

system on the satellites and ground stations in an actual satellite system. The satellites

are at different altitudes on the earth and the distance between them and the ground

 76

stations is very large. The propagation delays on the transmission link can be as high

as 250ms for satellites in GEO orbits. On account of such high propagation delay,

large amount of packets are in flight on the link before they reach the destination.

• The SBI Emulation System emulates these transmission links as Ethernet

connections between two virtual Ethernet Interfaces. The propagation delay on

these Ethernet connections is very negligible on account of very small distances.

The packets suffer from transmission delay, which depends on link bandwidth and

packet size and queuing delay, which is varying depending on the amount of data

queued.

• To model the communication link, simulation of propagation delay is very

important. The propagation delay is in milliseconds, which is far more than the

transmission delay. Since the transmission delay is lesser than the propagation

delay, the packets have to be queued at the VETH device before they are

transmitted on the device. The amount of time the packets need to be queued

would correspond to the propagation delay on the transmission link.

• On account of high propagation delays, there are many packets in-flight along the

transmission path until the first packet reaches the destination. The numbers of in-

flight packets have to be queued at the VETH layer before the first packet is

transmitted from the VETH layer.

• Therefore, one of the requirements is to find out the queue size that would be

necessary to place the packets until they are delayed. In case the queue size is not

up to the requirements, the packets will be dropped at the VETH layer in case if

the queue is completely filled. Since the propagation delay varies in different

satellite links, each connection can have different queue size. The queue size has

to be calculated and allocated at the VETH layer.

 77

• Also, on a particular link, the propagation delay varies, which varies the queue

size on the VETH layer. The variations in the queue size have to be known so as

to change the queue size according to the changes in the propagation delay.

• The propagation delay at the VETH layer represents the value on the actual link.

During the simulation time, this value might change as the distance between the

two elements forming the link change. The changes in the delay values should be

notified to the VETH layer. This requires a control program that shall interface

with the delay functions in the VETH layer. The details of the implementation

are explained in the later sections.

Based on these requirements, an analysis has to be first made for calculating the

propagation delay values on actual satellite transmission links. Satellites at different

orbits should be considered. Calculation of propagation delays on the actual

transmission links can then be considered for the analysis. The values obtained for

different type of links will help provide a better picture about the maximum and

minimum delay values and the delay variations for a particular link.

5.2 Propagation Delay Variations in Satellite Systems
As according to the requirements, one of the tasks is to find the range of values for

the propagation delays normally occurring on the transmission links. Since

propagation delays depend on the distance between the elements, the propagation

delays between all satellite links aren’t the same.

For a complete analysis of the delay variations on a transmission link, all the different

types of satellites and ground stations have to be considered. There are three types of

satellites, satellites in LEO, MEO and GEO orbits. All the possible links between the

satellites and also between the ground stations have to be taken into account for delay

 78

computations. Therefore, a total of six different types of links can be considered for a

thorough analysis.

5.2.1 Using Satellite Tool Kit for delay analysis

Satellite Tool Kit (STK) is an analysis tool that addresses all phases of the satellite

systems. STK models the satellite systems and performs analysis of different

properties of satellites and facilities. These properties include vehicle propagation,

determination of visibility areas and times for satellite connections, computation of

access times for the transmission links (Line of Sight) and propagation delay, display

of orbital positions and generation of results in textual and graphical formats. Based

on simple inputs through shell scripts or command lines, STK generates orbital paths

for a variety of space and ground based objects, such as satellites and ground station

facilities [17].

Scenarios can be created in STK, where the scenario elements are the actual satellites

and ground stations obtained from the STK satellite database. The STK can simulate

the entire mission of the satellites through its graphical user interface. It also provides

reports and graphs on various properties of the satellites and facilities throughout the

simulation time.

STK has a Connect module to provide the user an easy way to connect with STK and

work with it in a client-server environment. The interface is using TCP/IP or domain

sockets. Third-party applications can connect to STK using the library provided with

the STK Connect Module. This library contains functions, constants and other

messaging capabilities that help the user use STK. Connect module also allows the

user to modify the standard messaging formats also.

Figure 12 shows the interaction of the Connect module[17] with the user applications

to use STK libraries and control simulation graphical interface.

 79

Fig 12: User Application using Connect Module to interface with STK

The Connect Module has a list of commands, which the user can execute to control

the simulation and obtain results. These commands can be executed on the command

line or through a file.

To analyze the propagation delays in satellite systems, a scenario having 3 satellites

(all in different orbits) and a ground station was simulated. This scenario covered all

types of possible satellites as each satellite is in a different type of orbit. Propagation

delays were calculated for all the links possible between the elements and a Report

stating the values of propagation delay versus simulation time was obtained. The

exact details are covered in the next section

5.2.2 Scenario Details

The scenario to be simulated had four elements, three satellites and a ground station.

All the satellites were in different orbits, LEO, MEO and GEO. The satellites were

obtained from the STK database and the ground station Facility was specified by the

latitude and longitude on the earth.

Elements in the scenario:

1) Facility:

 80

Name: Ground Station

Latitude: 12 Deg.

Longitude: 45 Deg.

2) Satellites:

 GFO_LEO USA_144_MEO SKYNET_4E_GEO

Type Satellite Satellite Satellite

Official Name GFO USA 144 SKYNET_4E

Mission Oceanography Radar Imaging Military

Apogee 789Km 3131Km 35797Km

Perigee 783Km 2689Km 35777Km

Period 100.5min 148.5 min 1436.0min

Inclination 108.1deg 63.4deg 2.5deg

Orbit LEO MEO GEO

Table 1: Details of the Satellite elements in the Scenario

The STK tool loads these elements in the simulation. The graphical interface shows

these elements and their orbits. The GEO satellite is stationary above the ground

station. The LEO and the MEO satellites are moving in opposite directions to each

other. The simulation time period was fixed to be 1 day, which is 1440 minutes.

The STK software can compute a report of the access times between two elements.

Since all the possible links were to be considered, there were six different links

established:

1) Ground Station –LEO 2) Ground Station-MEO

3) Ground Station-GEO 4) MEO –GEO

5) MEO-LEO 6) LEO-GEO

 81

An STK Report was generated giving the access times for each of the links. Also,

propagation delay on each link was calculated for every minute of the simulation as

the simulation time was in minutes.

5.2.3 Analysis of Link Propagation Delays

For each access time frame, a graph of the propagation delay values against the

simulation time was generated. The graphs were generated for all the links. Each of

the links is discussed below.

5.2.3.1 Link between Ground Station and a LEO satellite

Data

Satellite: GFO_ LEO

Ground Station: Facility

The STK generates a report for the Access times for the link during the entire

simulation.

STK Access Report:

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 70.7942 80.2817 9.487

2 166.4119 181.2301 14.818

3 267.8557 275.1652 7.31

4 737.0386 739.7967 2.758

5 828.6642 843.2451 14.581

6 928.5839 939.8317 11.248

Table 2: STK Access Report for a LEO-Ground Station Link

 82

Graphs:

The Delay variations are observed to be similar for all the accesses and so only a few

of the graphs are shown.

Fig 13: Propagation Delay versus Time for LEO-Ground Station Access

Observations:

• The maximum delay on a LEO-ground station link = 11ms

• Minimum Delay = 3ms

• The ground station can access the satellite for around 15 minutes maximum

during each access.

 83

• Maximum delay variations per minute are 2ms.

5.2.3.2 Link Between Ground Station and MEO Station

Data:

Satellite: USA_144_MEO

Ground Station: Facility

There are 6 accesses during the entire simulation. The table below states the Access

Report for the Ground Station-MEO link.

STK Access Report:

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 121.344 159.444 38.1

2 276.7916 314.3661 37.574

3 626.3372 646.9397 20.602

4 776.8671 817.618 40.751

5 932.7947 971.2767 38.482

Table 3: STK Access Report for a MEO-Ground Station Link

Since all the access times are similar, the graphs generated are shown for only four of

the access times.

 84

Graphs:

Fig 14: Propagation Delay versus Time for MEO-Ground Station Access

Observations:

• Max delay = 24ms

• Minimum Delay = 11ms

• The ground station can access the MEO satellites for 40 minutes for each access

duration.

 85

• Maximum delay variations per minute: 1ms. The delay doesn’t change with every

minute, its constant for some amount of time before changing.

• The delay variations for each access are the same with slight variations in the

maximum and the minimum values.

5.2.3.3 Link Between Ground Station and GEO Satellite

Data:

Satellite: SKYNET_4E_GEO

Ground Station: Facility

The GEO synchronous satellite appears stationary above the ground station and so the

ground station can access the satellite continuously throughout the simulation.

STK Access Report:

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 0 1440 1440

Table 4: STK Access Report for a GEO-Ground Station Link

The graph of propagation delay versus the scenario time (epoch minutes) is plotted as

follows:

 86

Graphs:

Fig 15: Propagation Delay versus Time for GEO-Ground Station Access

Observations:

• Since the GEO satellite is stationary with respect to the ground station at all times,

the delay is constant throughout the simulation period.

• Delay = 128ms

5.2.3.4 Link between the LEO and MEO satellites

Data:

LEO Satellite: GFO_LEO

MEO Satellite: USA_144_MEO

The two satellites are travelling in the opposite direction towards each other. The

number of accesses on the link is more and the duration of each access is uniform 25

 87

minutes. The STK Access Report generates the access duration for 24 accesses during

the entire simulation period.

STK Access Report

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 28.2416 53.7676 25.526

2 89.0692 113.006 23.937

3 148.223 173.1477 24.925

4 208.9476 233.5161 24.569

5 268.6372 292.8469 24.21

6 328.3106 353.802 25.491

7 389.0586 412.9847 23.926

8 448.2038 473.2368 25.033

9 509.0033 533.4735 24.47

10 568.5956 592.867 24.271

11 628.3841 653.8252 25.441

12 689.0444 712.964 23.92

13 748.1949 773.3254 25.131

14 809.0523 833.4306 24.378

15 868.5514 892.8966 24.345

16 928.4606 953.8382 25.378

17 989.0261 1012.945 23.919

18 1048.197 1073.412 25.215

19 1109.095 1133.388 24.293

20 1168.506 1192.935 24.429

21 1228.538 1253.842 25.304

22 1289.003 1312.929 23.925

 88

23 1348.21 1373.494 25.285

24 1409.132 1433.345 24.214

Table 5: STK Access Report for a LEO-MEO Link

The graphs are plotted for each of the access duration. The delay variations for all the

access graphs is found to be similar and so only a few graphs are shown here to

denote the delay variations.

Graphs

Fig 16: Propagation Delay versus Time for LEO-MEO Access

Observations:

• Since the 2 satellites are travelling opposite to each other, there are more accesses.

• Maximum delay = 34 ms

• Minimum delay = 7 ms

• Maximum Delay Variations per minute = 3ms

• Total access time for each duration = 25 minutes.

 89

• The delay variations exhibit a same pattern for each access. The initial delay is

around 34ms and then later on decreases gradually till approximately 7ms. As the

satellites go further away from each other, the delay increases to the maximum

value of 34ms till the loss of line of sight.

5.2.3.5 Link between the GEO and MEO satellites:

Data:

GEO Satellite: SKYNET_4E_GEO

MEO Satellite: USA_144_MEO

STK Access Report:

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 0 45.4247 45.425

2 87.9136 556.834 468.92

3 596.4867 709.072 112.585

4 752.7151 871.6173 118.902

5 899.9558 1227.519 327.563

6 1261.964 1376.87 114.906

7 1421.919 1440 18.081

Table 6: STK Access Report for a MEO-GEO Link

 90

Graphs:

Fig 17: Propagation Delay versus Time for MEO-GEO Access

 91

Observations:

• Maximum Delay = 163ms

• Minimum Delay = 112 ms

• Maximum Delay Variations per minute = 2ms

• The delay variations aren’t same for all the accesses. For access intervals more

than 300 minutes (Access2), the delay variations are uniform with 1ms variation

per minute.

• For access intervals of 110 to 115minutes (Access 3) , the delay variations are

uniform (1ms variation per minute), but a slight change in the pattern is observed

at delay values between 145 and 135 ms. At around 142 ms, the delay variation is

2ms per minute.

• Similar pattern is also observed for access intervals lesser than 45 minutes (access

1). A slight variation in delay pattern is observed between the delay values 150ms

and 140ms.

5.2.3.6 Link between the LEO and GEO Stations

Data:

GEO Satellite: SKYNET_4E_GEO

LEO Satellite: GFO_LEO

STK Access Report:

Access Start Time

(Epoch Minutes)

Stop Time

(Epoch Minutes)

Duration

(Minutes)

1 0 6.2775 6.278

2 44.7646 105.911 61.146

3 141.0331 206.5725 65.539

4 230.7235 381.4226 150.699

 92

5 400.6803 468.1245 67.444

6 501.9027 563.581 61.678

7 601.682 661.6527 59.971

8 700.7358 760.8007 60.065

9 798.604 860.6509 62.047

10 893.4923 962.2723 68.78

11 978.1531 1129.955 151.802

12 1156.339 1220.974 64.635

13 1256.744 1317.613 60.869

14 1356.279 1416.128 59.849

Table 7: STK Access Report for a LEO-GEO Link

Graphs are plotted for Access 3 and Access 4 since there are only two variations in

the access durations.

 93

Graphs:

Fig 18: Propagation Delay versus Time for LEO-GEO Access

Observations:

• Minimum Delay = 112ms

• Maximum Delay = 150ms

 94

• Maximum Delay variation per minute = 2 ms for access intervals around (0-

70minutes), example Access 3.

• For access intervals in the range of 150 minutes (Access 4), the delay variations

are uniform (1 ms per minute).

Conclusions:

• The transmission links for all the possible combinations are examined.

• The maximum delay variations per minute are 3 ms and minimum is 1 ms.

Based on these results, the algorithm for simulating the propagation delay is devised.

5.3 Algorithm for simulating Delay
5.3.1 Requirements

The algorithm is based on the requirements listed in Section 5.1. The propagation

delay has to be simulated one-way and so the packets have to be delayed while they

are sent on the physical device of the transmitting SBI node. The algorithm devised

for simulating the delay is as follows:

• The packets have to be queued at the VETH layer and the queue size should be

equal to the size of the in-flight bytes for that particular transmission link.

• So after the packets are delayed for the required amount of time, the packets have

to be de-queued from the queue. The number of packets that have to be de-queued

from the queue is equal to the number of packets that are in-flight on the

transmission link.

• The number of packets to be de-queued at one time should be calculated. To

compute this number, two parameters are required: transmission delay at the

source and the propagation delay on the link.

 95

• Transmission Delay (seconds) = Average Packet Size (Bytes)

 Bandwidth (bps)

• Total Number of packets in flight = Propagation Delay (milliseconds)

 Transmission Delay (milliseconds)

• The packet size can be a standard Ethernet MTU size of 1514 bytes. The

Bandwidth is the link rate on the connection. The total number of packets

multiplied by the average packet size gives the actual number of bytes that are in

flight on the link.

• Another important parameter to be considered is the amount of delay variations

on the link. This would change the queue size at the VETH layer. From the

analysis results, the maximum delay variations are mostly 3ms per minute, which

would increase or decrease the queue size by only 25 packets. The change in the

queue size is also gradual.

• The above mentioned parameters and the delay value have to be passed to the

VETH layer through a Delay Control Program. The Delay Control Program is a

part of the Communications Controller Unit on the SBI Nodes. The control

program receives the delay parameters from the Emulation Manager and

accordingly sets the delay at the VETH layer through an ioctl () system call. The

details of the control program are explained in the next section.

5.3.2 Calculations for the number of In-flight Packets

For the calculations, consider the maximum link speed on the SBI Node, which is

100Mbps. The average packet sizes can be 64, 1500 and 9180 bytes.

The first table calculated the transmission delay (in us) .

 96

Packet Size (Bytes) 64 1500 9180

Transmission

Delay (us)

5.12 120 734.4

Table 8: Transmission Delay for different packet sizes

To following tables give the calculations for the number of packets in flight for all the

links considered in the analysis. The total number multiplied by the average packet

size gives the total number of bytes on the link until the first packet reaches the

destination.

1) LEO-Ground Station :

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Max Delay = 11ms 2148 92 15

Min Delay = 3 ms 586 25 4

Delay variations

(+/- 2ms)

+/- 391

17 3

Table 9: Number of bytes in-flight on a LEO-Ground Station

2) LEO-MEO

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Max Delay = 34ms 6641 283 46

Min Delay = 7ms 1367 58 10

Delay variations

(+/- 3ms)

+/- 586 25 4

Table 10: Number of bytes in-flight on a LEO-MEO Link

 97

3) LEO-GEO

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Max Delay = 150ms 29267 1250 204

Min Delay = 112ms 21875 933 153

Delay variations

(+/- 2ms)

+/- 391 17 3

Table 11: Number of bytes in-flight on a LEO-GEO Link

4) MEO-Ground Station

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Max Delay = 24ms 4688 200 33

Min Delay = 11ms 2148 92 15

Delay variations

(+/- 1ms)

+/- 195 8 2

Table 12: Number of bytes in-flight on a MEO-Ground Station link

5) MEO-GEO

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Max Delay = 163ms 31836 1358 222

Min Delay = 112ms 21875 933 153

Delay variations

(+/- 2ms)

+/- 391 17 3

Table 13: Number of bytes in-flight on a MEO-GEO Link

 98

Number of packets in flight for 3 packet sizes (bytes) Delay Value (ms)

64 1500 9180

Constant Delay

= 128ms

25000 1067 174

Table 14: Number of bytes in-flight on a GEO-Ground Station link.

5.3.3 Algorithm Flow

• The propagation delay has to be introduced after the value of the link bandwidth

is set to the Constant Bit Rate. The queuing discipline used is Token Bucket Filter

(TBF) for limiting the rate on the link.

• The packets have to be queued at the VETH Layer for a time equal to the

propagation delay value before sending it to the physical layer.

• Once the queued packets are delayed for the required amount of time, the packets

have to be de-queued. The amount of bytes that should be de-queued at one time

is equal to the number of bytes that are in-flight on the link.

 99

5.4 Delay Control Program
Figure 13 refers to the SBI Node Controls for introducing the propagation delay on

the VETH devices.

Fig 19: SBI Node Controls to simulate propagation delay

The Delay parameters are obtained from the Emulation Manager through the

Manager Interface. These parameters are forwarded to the Delay Controller module in

the Communication Controller Unit. The parameters passed to the control program

from the Emulation Manager are:

• The virtual device on which the propagation delay has to be simulated.

 100

• The link rate and the average packet size to calculate the transmission delay on

the link.

• A complete STK report giving the Access times and the propagation delay values

(in milliseconds) on the transmission link for the entire simulation time.

The STK report is in steps of seconds. The control program utilizes the “Access

Report” to get the time duration (in seconds) for each access. Further, within each

access the control program calculates ranges for which the delay remains constant.

The control program puts the information in the following format:

1. Start time (seconds)

2. Stop time (seconds)

3. Total Duration (seconds)

4. Propagation Delay Value (milliseconds)

Getting the delay values from the calculated ranges, the values for transmission delay

and the queue size (which represents the total in flight bytes) are calculated. These

calculated values along the delay value is passes to the corresponding virtual device

through the ioctl() call. The control program keeps track of the time for which the

delay remains constant through the calculated delay range by using sleep() function.

In case of any delay change, the parameters are passed to the VETH layer through the

control program.

5.5 Implementation at the VETH layer
The implementation for the propagation delay involves extension to the functionality

of the VETH layer. Some additional functions have to be added to the existing

framework of the VETH layer. This section talks about the functions that have to be

added to the VETH layer for simulating the propagation delay.

 101

5.5.1 Additional data structures in the VETH Layer

The packets have to be queued to the VETH layer to simulate the delay. Each

instance of the queue is represented by struct queue_element. The queue to store these

instances is represented by struct times_queue. Every VETH device has a

times_queue associated with it. The times_queue is an additional field in the

veth_device structure for the VETH device. Program 5.1 details out struct

times_queue and struct queue_element.

Program 5.1: Structures for queuing packets at the VETH layer

Struct times_queue{
 Struct queue_element *list; /* Elements of the queue */
 Struct timer_list wd_timer; /* Watchdog Timer */
 Long limit; /* Limit for the queue*/
 Struct packet_stats stats; /* Statistics for the queue */
 Long inflight_bytes; /* Total in-flight bytes

* on the link */
 long delay; /* propagation delay on the

 * link */

};

struct queue_element{
 struct sk_buff *skb; /* Packet Buffer */
 struct timeval time; /* Timestamp the packet */
 long delay_us; /* Propagation delay for the
 * skb packet */
 struct queue_element *next;
 struct queue_element *prev;
 struct times_queue *Queue; /* Queue to which this element
 * is attached */
};

struct packet_stats{
 long bytes; /* Number of “skb” bytes queued
 * in the times_queue */
 int packets; /* Number of “skb” packets */
 int drops; /* Number of packets dropped */
};

 102

The struct times_queue represents the queue to place the packets at the VETH layer

before transmission. The individual elements of the queue are represented by struct

queue_element. This structure stores the packet and the time stamp, when it was

queued. It also stores the propagation delay associated with that packet.

The times_queue also has a watchdog timer incase the packets aren’t de-queued at the

right time. The veth_device structure has an entry to Times Queue that is associated

with the device. This queue delays the packets to be sent on the physical device. It

also stores the value of the propagation delay on the link. This is the value passed

through the ioctl() system call.

5.5.2 Additional Functions for the VETH layer

These functions can be added as an extension to the VETH layer framework. The

packets are received from the IP layer to the VETH layer through veth_send()

function. The packets are enqueued on the Times Queue in this function. While de-

queuing the packets, the timestamp on the packets is compared with the current

timestamp. If the packets have been delayed for the required amount of time, then the

packets are de-queued from the queue and the transmit function for the physical

device is called.

Some additional functions have to be added to the VETH layer to implement the

delay. These functions place the packets on the Times Queue and then de-queue it

after adding the propagation delay. An additional option has to be added to the

veth_ioctl () function to pass the delay parameters to the VETH layer.

 103

Some of the additional functions added to the VETH layer:

• Veth_delay_init:

This function is invoked from veth_ioctl call () to assign the value of the delay

parameters to the corresponding fields of struct times_queue. The data structures

are stated in Program 5.1. Program 5.2 states the pseudo-code for initializing the

fields of struct times_queue.

The fields times_queue->limit and times_queue->delay are passed from the Delay

Controller Module through the ioctl() call.

• Veth_enqueue:

This function gets the packet from the IP layer. It creates an instance of struct

queue_element to store the packet and the time stamp, when it was enqueued.

This function also checks for the maximum queue limit for the Times Queue. In

case the queue doesn’t exceed the limit, the function veth_enqueue_tail() is

called, which queues the packet at the tail of the queue.

• Veth_enqueue_tail:

This function queues the packet at the tail of the queue. Each queue element has a

pointer to its previous and the next element in the Times Queue.

Program 5.2: Initializing the fields for queue limit and delay in Times Queue

 times_queue->limit = inflight_bytes + TOLERANCE; /* from ioctl

*call */

 times_queue->delay = prop_delay; /* from ioctl call */

 104

• Veth_enqueue_head:

This function queues the packet at the head of the queue. This function is called

from veth_dequeue () function. In case the packet is not delayed for the required

amount of time, then the packet has to be placed at the head of the queue to be de-

queued again.

• Veth_enqueue_head_init:

This function initializes the head of the queue.

• Veth_dequeue:

This function de-queues the packet from the Times Queue. It compares the time

Stamp on the packet with the current time stamp. If the time difference equals to

the propagation delay for the packet, then the packet is transmitted to the physical

device. Otherwise, the packet has to be queued at the head of the Times Queue by

calling veth_enqueue_head ().

• Veth_dequeue_head:

This function de-queues the packets from the Times Queue. It is called from

veth_dequeue () function to remove the packet from the queue.

• Veth_watchdog:

This function is invoked when the watchdog timer related to the Times Queue

expires. This timer expires if the veth_dequeue () function is not called for a

certain time. This function de-queues the packet by calling veth_dequeue_head ()

and calling the transmission function for the hardware device.

In case, the packets are not transmitted successfully on the physical device, the

veth_requeue() function is called, which queues the packet again at the head of the

queue.

 105

5.5.3 Modifications to the existing VETH Layer Functions

• Veth_ioctl

This function can take another option to pass the delay parameters to the VETH

layer. The parameters passed are:

• Propagation Delay (microseconds)

• Total Number of bytes that are going to be in-flight on the link.

The parameters are passed from the control program into this function through the

ioctl() call. These values are assigned to the fields of struct times_queue as stated in

Program 5.2. The ioctl calls the veth_delay_init () for assigning the delay parameters

to the corresponding fields of Times Queue.

• Veth_init

This function is modified to initialize the fields of the data structures used for

delay. The data structures are stated in Program 5.1. Program 5.3 states the

pseudo-code for initializing the data structures for propagation delay.

• Veth_destroy:

When the VETH device is destroyed, the memory occupied by the struct

times_queue and struct queue_element has to be freed.

Program 5.3: Initializing Data Structures for Delay in veth_init

 veth_enqueue_head_init (vethdevice->times_queue);
 times_queue->limit = 0;
 times_queue->delay = 0;
 init_timer(×_queue->wd_timer);
 times_queue->wd_timer.function = veth_watchdog;
 times_queue->wd_timer.data = (unsigned long)times_queue;

 times_queue->stats.bytes = 0;
 times_queue->stats.packets = 0;
 times_queue->stats.drops = 0;

 106

5.5.4 Function Flow for simulating the delay

The packets coming from the IP layer are subjected to CBR control and sent to the

transmit function for the VETH device. The packets are placed in the queue and de-

queued only after they are delayed for the required amount of time. This section

explains the sequence of execution of different functions for sending the packet from

the IP to the physical device layer.

5.5.4.1 Queuing Packets for Inserting the delay

The packets come to the VETH layer through the veth_send () function. In case the

packets have to be delayed, the veth_send() function calls the veth_enqueue ()

function to queue the packets on the Times Queue. In the queuing function, initially

an instance of struct queue_element is created to store the packet. The packet is time

stamped when it is queued. The other elements include the delay associated with the

packet. This value represents the value of the Propagation delay for the VETH device.

The Times Queue has a limit, which is the sum of the in-flight bytes and some

tolerance. When the packet has to be placed in the Times Queue, the queue limit is

checked. If the limit exceeds the maximum specified value with the addition of the

packet, then the “skb” packet is dropped or otherwise the packet is queued.

Once the queue element is created, it is en-queued at the tail of the Times Queue

using veth_enqueue_tail () function. The Times Queue is attached to the

corresponding VETH device. Each queue element also has a reference to the queue in

which the elements are placed.

5.5.4.2 De-queuing the packets for transmission

The veth_send () function also calls the de-queue function of the packets. The de-

queue function at the VETH layer, which is veth_dequeue(), removes the packet

from the queue. The packet is de-queued from the head of the queue by calling

veth_dequeue_head() function. The time stamp on the packet is compared with the

 107

current time. If the difference between the two times equals the propagation delay

value, then the packet has been delayed and can be transmitted on the physical device

driver.

If the time difference doesn’t equal the propagation delay value, then the packet is en-

queued at the head of the Times Queue until it is delayed for the specified time using

veth_enqueue_head () function.

Once the packet is queued, then the transmission function for the physical device is

called. In case, there is an error in transmission of the packet on the physical device,

the packet is re-queued on the Times Queue.

 108

Chapter 6

6 Conclusions and Future Work

6.1 Conclusions
The SBI project aims at creating an Internet between the EOS satellites and

incorporate routing and switching capabilities in them. The SBI software will enable

the satellites to route their data to other satellites and grounds stations and not depend

on the communication satellites such as TDRSS for relaying their information. The

SBI emulation system described in this thesis will test the software on multiple

scenarios. The proposed emulation system models an entire satellite system, which

includes the emulation of the space and the ground segments and the communication

between them. Emulation of communication links between these elements is a

challenging task and its design involves careful considerations.

 This thesis work presents a convincing design for emulating the satellite

communication links. A satellite communication link has the following important

features, which need to be considered during its design:

• A satellite transmission link is established between the instrument channels on the

satellites and ground stations or other satellites. Each instrument has a separate

communications channel (RF or Optical).

• The satellite link needs to have a dedicated bandwidth for the entire transmission

duration to provide Constant bit rate (CBR) service to the signals.

• On account of large distances, the signals on these links suffer from high

propagation delays and bit errors.

The design work presented in this thesis covers all these major aspects to emulate the

communication on the satellite link. This thesis work makes the following

contributions:

 109

• It describes a design for emulating the communication channels through Virtual

Ethernet (VETH) devices. The connection between two VETH devices emulates

the communication link.

• It provides a convincing description for utilizing the Quality of Service algorithms

in Linux to provide CBR service on the virtual Ethernet connections. This

mechanism provides a dedicated bandwidth on the connection and emulates the

CBR feature of the satellite transmission link.

• It presents an algorithm for simulating high propagation delays on the emulation

link. The propagation delay values represent the actual path delays occurring on

the satellite link.

6.2 Future Work
This thesis presents a design for emulating a simple channel to channel

communication link. The work does not include the mechanism for modeling bit

errors on the link. The prototype design for communication emulation, described in

this thesis can be modified to model the actual Bit Error Rate (BER). This could be

achieved by introducing bit errors in the packets during transmission.

A convincing design has to be implemented to test its correctness. So one of the

future tasks would be to implement the communication emulation unit as a separate

application, test and evaluate it and then integrate it with the entire emulation system.

The communication emulation unit can be tested on the emulation system hardware.

 110

References
[1] Destination: Earth, The Official Website for NASA’s Earth Science Enterprise,

http://www.earth.nasa.gov/science/index.html

[2] NASA’s Earth Observing System (EOS) Home Page, http://eospso.gsfc.nasa.gov

[3] Minden, G.J., Evans J.B., Architecture for Space Based Internets, NASA ESE

Proposal, December 2000.

[4] Bleazard, G. B., Introducing Satellite Communications, NCC Publications,

England, 1985.

[5] Inglis, Andrew F., Luther, Arch C., Satellite Technology: An Introduction, Focal

Press Publications, U.S.A, Second Edition, 1997.

[6] TDRSS Online Information Center, http://nmsp.gsfc.nasa.gov/tdrss

[7] Searl, Leon S., Space Based Internet System Architecture, SBI Project, ITTC,

University of Kansas, February 2001.

[8] Baliga, Sujit R., Rallapalli, Sandhya, Space Based Internet Emulation Software

Architecture Design, SBI Project, ITTC, University of Kansas, March 2001.

[9] Roelof, Jonkman J. T., Netspec: Philosophy, Design and Implementation, MS

Thesis, University of Kansas, February 1998.

[10] House, Sean B., Niehaus, Douglas, Sanchez, Ricardo, Virtual Network Devices,

Technical Report, ITTC-FY00-TR-13200-X, August 2000.

[11] Almesberger, Werner, Linux Traffic Control- Implementation Overview,

ftp://lrcftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps.gz, Technical Report

SSC/1998/037, EPFL, November 1998.

 111

[12] Radhakrishnan, Saravanan, Linux-Advanced Networking Overview,

http://qos.ittc.ukans.edu/howto.ps, August 1999.

[13] Wagner, Kurt, Short Evaluation of Linux’s Token-Bucket-Filter (TBF) Queuing

Discipline, http://www.cosy.sbg.ac.at/~kwagner/tbf02_kw.ps

[14] Alexey Kuznetsov, iproute2 package, ftp://ftp.inr.ac.ru/ip-routing/

[15] iproute2 + tc notes, http://snafu.freedom.org/linux2.2/iproute-notes.html

[16] References on CBQ (Class-Based Queuing),

 http://www.aciri.org/floyd/cbq.html.

[17] Overview of Satellite Tool Kit, ITTC, University of Kansas,

/projects/SBI/otherSW/stk/STKv4.1/STKData/Help/Overview.htm

[18] Evans, J.B. , Minden, G.J., Prescott, G., Shanmugan, K.S., Frost, V.S., Petr, D.

W., and Plumb, R., Rapidly Deployable Radio Network”, IEEE Journal on

Selected Areas in Communications, March 1999.

 112

Appendix

Appendix A : Commands and Examples relating to VETH devices
• Creating a Virtual Device on device eth1 having a MAC Address 00:04:86:00:00:01

Vethctl –c eth1 00:04:86:00:00:01

 Vethctl: Virtual Device veth0 created successfully

• Listing the 3 virtual devices created on physical device eth1 along with all

the details.

Vethctl –l

 Number of devices created: 3

 List of devices:

 On eth1: 3virtual devices

Virtual device Physical device itfNum Mac Address

 veth2 eth1 2 00:04:86:00:00:03

 Veth1 eth1 1 00:04:86:00:00:02

 Veth0 eth1 0 00:04:86:00:00:01

• Deleting a virtual device with interface number 0.

Vethctl –d 0

 ItfNum to be deleted: 0

 Vethctl: Virtual Device veth0 destroyed successfully

• The virtual devices can be viewed through ifconfig command.

 113

Ifconfig veth1

veth1 Link encap:Ethernet HWaddr 00:04:86:00:00:02

 inet addr:10.67.2.11 Bcast:10.255.255.255 Mask:255.0.0.0

 UP BROADCAST RUNNING MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:80:C8:B9:02:40

 inet addr:10.67.2.1 Bcast:10.255.255.255 Mask:255.0.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 Interrupt:9 Base address:0xcc00

 114

Appendix B: Script for setting up TBF and CBQ queuing disciplines

Consider Fig 10: for the scenario. Node A and Node B are observational Satellites

having data rates at 450Kbps and 665 Kbps respectively. These nodes have a

connection from their veth1 devices to Node X on veth1 and veth2 respectively. The

veth3 of Node X is connected to veth3 of Node Y.

Nodes A and B have TBF queuing disciplines on their virtual devices. The TBF

queues limit the rate on the link to the data rates specified.

IP addresses are set as follows:

 Veth1 on Node A: 10.67.7.1

 Veth1 on Node B: 10.67.9.1

 Veth1 on Node X: 10.67.1.1

 Veth2 on Node X: 10.67.1.2

Node X takes 2 traffic flows:

Node A (veth1 – 10.67.7.1) to Node C (veth1 10.67.8.1)

 Node B (veth1 – 10.67.9.1) to Node D (veth1 10.67.11.1)

• Setting up a TBF queue having rate 450Kbps on veth1 of Node A.
tc qdisc add dev veth1 root handle 10: tbf rate 450kbit burst

450k/8 limit 450k

• Setting up a TBF queue having rate 665Kbps on veth1 of Node B.
tc qdisc add dev veth1 root handle 10: tbf rate 665Kbit burst

665k/8 limit 665k

• Node X has 2 traffic flows, each on veth1 and veth2. The destinations are Node C

and Node D and so the traffic is transmitted on veth3 to Node Y. Therefore, a

 115

CBQ can be setup on veth3 of Node X. The traffic can be classified to different

classes on the basis of the source and the destination IP addresses. The individual

classes can be allotted bandwidth as per the data rate specified.

Setting up the root CBQ queue on veth3 of Node X. Bandwidth

allocated to veth3 is 10Mbps.

tc qdisc add dev veth3 root handle 10: cbq bandwidth 10mbit avpkt \

1000 allot 1514 cell 8 mpu 64

#Attaching the root class to the CBQ queue and creating 2 classes

within for the two traffic flows.

tc class add dev veth3 parent 10:0 classid 10:1 cbq bandwidth 10Mbit

rate 10Mbit allot 1514 weight 1Mbit prio 8 maxburst 20 avpkt 1000

tc class add dev veth3 parent 10:1 classid 10:100 cbq bandwidth

10Mbit rate 450kbit allot 1514 weight 45kbit prio 2 maxburst 20

avpkt 1000 bounded

tc class add dev veth3 parent 10:1 classid 10:200 cbq bandwidth

10Mbit rate 665kbit allot 1514 weight 66kbit prio 5 maxburst 20

avpkt 1000 bounded

Creating U32 classifiers to classify the packets to the classes.

The filters match each flow on the source and destination IP address

combination

tc filter add dev veth3 parent 10:0 protocol ip prio 100 u32 match

ip dst 10.67.8.1 match ip src 10.67.7.1 flowid 10:100

tc filter add dev veth3 parent 10:0 protocol ip prio 200 u32 match

ip dst 10.67.9.1 match ip src 10.67.11.1 flowid 10:200

 116

APPENDIX C: Using STK for Delay Analysis

Appendix C describes the set of STK commands that can be given by the user to get

the “Access” and “Delay” Reports for a particular transmission link.

• STK has a Connect module, which allows the user to setup a TCP connection

with STK to obtain information about the scenario. The set of commands can be

typed in a file and the executed through “AgIPCExp” command.
 AgIPCExp –f [socketName] < [filename]

Referring to the scenario discussed in Section 5.2.2, the STK Connect module can

be used to load the different elements of the scenario and obtain the “Access” and

“Delay” Reports for various transmission links. An example of the script is shown

below:

Load the Scenario “gnd_3sats”

New / Scenario gnd_3sats

Set the Animation and the Simulation time for the

scenario

AllowAnimationUpdate Scenario/gnd_3sats ON

Animate Scenario/gnd_3sats “1 Jan 2000 00:00:00.00” “2 Jan

2000 00:00:00.00”

Obtain an “Access” Report and a “AER” Report for a GEO-

Ground Station transmission link in access_geo_gnd.txt and

delay_geo_gnd.txt respectively. AER report gives delay

versus time.

 117

Report Scenario/gnd_3sats/Satellite/GEO SaveAs “Access”

“access_geo_gnd.txt”

Scenario/gnd_3sats/Facility/gnd_station

Report Scenario/gnd_3sats/Satellite/GEO SaveAs “AER”

“delay_geo_gnd.txt” Scenario/gnd_3sats/Facility/gnd_station

Unload / Scenario/gnd_3sats

