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Abstract 

The Earth Observational Satellites (EOS) transmit their collected information to 

communication satellites, which relay this information to the ground stations. NASA 

employs Tracking and Data Relay Services Satellites (TDRSS) for communication 

from the EOS satellites to the Earth. But each EOS satellite is assigned a fixed time 

slot to access the TDRSS and to relay their data. So until their access time slot, the 

EOS satellites need to store the data on-board using high data rate and high capacity 

recorders. 
 
The need for such huge storage components on the satellites could be eliminated if 

the satellites were capable of routing and switching data to other satellites and ground 

stations. The Space Based Internet (SBI) development project applies this concept to 

design and implement a prototype for achieving inter-networking between the 

satellites and ground stations. 

 

To evaluate and test this prototype, the SBI project proposes to develop an emulation 

system that will model an actual satellite system. One of the major functions of this 

system would be to emulate the actual communication links between satellites and 

ground stations or between satellites. The satellite link provides a constant bit rate 

(CBR) service during the entire transmission duration but the signal transmission 

suffers from high propagation delays. This thesis describes the requirements and 

design for emulating an actual satellite transmission link, which would provide CBR 

control as well as introduce the propagation delays during transmission.  
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Chapter 1 

1 Introduction 
 

1.1 Satellite Technology for Earth Observation: 
The concept of satellite communication gained importance when the first artificial 

Earth orbiting satellite in 1957[4], Sputnik transmitted information from space to 

Earth. Since then, the satellites have been widely used for telecommunications and 

Earth Observation purposes. Earth Observing System satellites (EOS) have enhanced 

our understanding of the Earth and surrounding space through remote sensing and 

communication of those results back to the Earth.  

 

In 1991, NASA launched a comprehensive program called the Earth Science 

Enterprise (ESE) [1] to study the Earth as an environmental system. By launching 

EOS satellites, NASA hoped to understand the impact of natural processes on the 

humans. The main aim of the ESE mission was to explore how the Earth’s systems of 

air, land, water and life interact with each other and so this mission blended together 

fields like meteorology, oceanography, biology and atmospheric science. 

 

The Earth Science Enterprise has three main components: a series of Earth-Observing 

Satellites, an advanced data system and a team of scientists to study the data. Phase I 

of this mission comprised of focused and free-flying satellites, Space Shuttle missions 

for airborne and ground-based studies. Phase II launched the first Earth Observing 

System (EOS) [2]satellites, Terra and Landsat-7. EOS supports a coordinated series of 

polar-orbiting and low-inclination satellites for long-term global observations. EOS 

satellites also coordinate their data collection with the other EOS satellites to provide 

information about a single event such as a hurricane.  
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1.2 Earth Observation Satellites  
The Earth Observing Satellites focus on monitoring and predicting the future changes 

in the environment. The EOS satellites can make observations over a larger area than 

the terrestrial stations. EOS can observe and monitor places such as distant parts of 

oceans, deserts and Polar Regions, which cannot be accessed by terrestrial links and 

thus prove to be advantageous for earth observations. 

 

Some of the important applications of the Earth observation satellites are: 

• Remote sensing over land and water 

• Atmospheric measurements 

• Predicting natural disasters like floods,  hurricanes 

• Navigation  

• Weather forecasts 

 

1.2.1 Network Issues in Earth Observation Satellites : 

Earth Observation satellites use number of technologies to collect observations and 

store raw data and communicating the information to the earth stations. These 

techniques include direct transmission, storage and deferred transmission and relay 

through communication satellites. 

 

1.2.2 Communication from EOS to Earth stations 

The communication in satellites is based on Line of Sight principle. The 

communication relay satellites receive and transfer the data information to the 

destination ground terminal when the ground terminal is in view of the satellite. The 

Earth Observation satellites use these relay communication satellites to transmit their 

information to the ground stations. 

 

The Relay system currently employed by NASA EOS satellites is the TDRSS system. 

TDRSS stands for Tracking and Data Relay Satellite System [6]. There are currently 
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6 TDRSS communications relay satellites, which provide complete global coverage. 

These satellites are able to see the ground stations, which fall within its coverage area, 

at all times.  

 

The EOS satellites take measurements over fixed points on the earth and then 

broadcast the data to TDRSS satellites. Through TDRSS, the EOS satellites can 

access the required ground station for 60 to 70% of its orbit time. Since there is a 

constellation of TDRSS satellites, the EOS satellites fall under the coverage area of 

any one TDRSS satellite or the other. TDRSS employs tracking services to locate the 

ground stations and relay services to transmit the information received from different 

sources to their respective destination ground stations. Fig1 shows the communication 

between the EOS satellites and the ground stations through TDRSS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: EOS to Ground Station Communication through TDRSS 

 

1.3 Problem Definition 
There are a large number of EOS satellites within the coverage area of a single 

TDRSS satellite and so each EOS satellite has a fixed time slot to transmit 
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TDRSS 

Ground 

Station
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information to TDRSS. Therefore, the EOS satellites need to have high data rate and 

high capacity recorders to store data on board. Also, the communications systems on 

the satellites need to be satellite specific, which means that each satellite should have 

its own communication frequency, protocol and command structure. This approach 

leads to incompatible and non-reusable communications components.  

 

1.4 Proposed Solution 
The Space Based Internet (SBI) development project proposes a solution to the 

current problems in satellite communication. It aims at establishing routing 

capabilities in the EOS satellites and ground stations. Such a mechanism will enable 

the EOS satellites to route data to the intended ground stations via other EOS 

satellites or ground stations and so eliminate the need for onboard data recorders. 

 

The SBI project envisions that each EOS satellite participates in a Space-Based 

Internet. That is, each satellite in the SBI system would be capable of originating 

network traffic, terminating traffic and above all, switching traffic between other 

satellites and ground stations [3]. The satellites would carry a communications 

systems, which has several channels or beams (RF or optical) and the satellites would 

communicate with each other over Internet Protocol (IP).  By centering the SBI 

system over a common communication protocol (IP) eliminates the need for having 

any satellite-specific communications systems or specialized ground station 

equipment [3]. 

 

1.4.1 SBI Approach 

The SBI project proposes to design, develop and implement an initial prototype of the 

architecture for creating a Space Based Internet. The SBI network software 

implementing the routing and switching functionality will comprise of standard 

modules that can be deployed with minimal cost on the satellites and ground stations. 
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This approach will lead to a standard communications system on every satellite and 

ground station. 

 

To evaluate the SBI system prototype, an SBI emulation system has to be developed. 

The emulation system will model the actual satellite system. Emulating a satellite 

system would involve execution of actual scenarios with the emulation nodes 

executing the SBI network software and applications programs.  

 

The emulation approach reduces the complexities and the costs involved as against 

evaluating the SBI software on a real satellite system. The emulation setup consists of 

normal PCs acting as emulation nodes, which would run the SBI network software. 

Different scenarios can be executed and tested without having to change much of the 

setup. The emulation system has to emulate the communications systems hardware on 

the satellites, since it is not feasible to construct the satellite hardware on the SBI 

nodes.  

 

1.4.2 Background for SBI Emulation System 

The motivation and the foundation for designing the SBI system is derived from the 

work done by University of Kansas for the Defense Advanced Research Projects 

Agency (DARPA). The project Rapidly Deployable Radio Network (RDRN) 

developed network control programs and communications systems to demonstrate a 

rapidly deployable network 

 

1.4.2.1 RDRN System 

The RDRN system utilized wireless ATM technology to provide an adaptive and re-

configurable network. It had interoperability with IP based networks and provided 

multi-hop operation over wireless nodes as far as 10 Km in distance. 
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Each RDRN node had RF communications systems and network control programs to 

establish the network topology and the optimum routes. In real environment, the 

nodes determined their location from Global Positioning Receivers. Knowing the 

locations of all the nodes, the system configured the network topology establishing 

point-to-point switched communication links. Further, the RDRN nodes calculated 

the optimum routes to the other nodes through the routing software.  

 

The RDRN emulation system was designed to test the RDRN network for multiple 

scenarios. The emulation system helped to evaluate systems, which would be much 

larger than those possible through actual deployment. 

 

1.4.2.2 RDRN Emulation System 

RDRN emulation system was built to test and evaluate the RDRN software. It 

consisted of RDRN nodes and the Emulation Manager, which controlled the 

emulation and the communication network between the nodes. 

 

The Emulation Manager was the bridge between the RDRN network nodes. In the 

emulation environment, the nodes initially registered themselves with the Emulation 

Manager and the Emulation Manager tracked the position of each RDRN node as per 

the scenario configuration file. 

 

The network control software executed the topology algorithm to determine the 

network topology. Upon deciding the topology, the Emulation Manager established 

the point-to-point links via the underlying ATM network. The routing protocol 

configured the optimum routes for each node. The communications network was 

based on “virtual circuits” created on the underlying ATM network. 
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The SBI Emulation System can be designed from the RDRN Emulation System. The 

existing RDRN framework can be used with some modifications to the 

Communication Emulation System to emulate space communication. 

 

1.4.2.3 SBI Emulation System. 

The SBI Emulation System design extends the land-based RDRN emulation system 

to emulate space-based systems. The SBI emulation system models the entire satellite 

system and the emulation nodes represent either satellites or ground stations. 

 

Following modifications can be done to the RDRN emulation system to build the SBI 

emulation system: 

• The RDRN emulation node has to represent a ground station or a satellite in 

Earth’s orbit. 

• The land-oriented node location and topology algorithms have to be modified to 

incorporate mobile nodes in Earth orbit. 

• The RDRN nodes communicate over short distances and at relatively low 

capacity. A SBI communication will be over much longer distances and will use 

high capacity links to handle observational data. Therefore, the communication 

emulation software for RDRN has to be modified to account of long-ranged, 

space-based communication systems. 

• Communication Traffic models have to be developed according to the satellite 

systems and earth scientist’s data gathering goals. 

• Along with routing algorithms, the emulation system also has to include 

scheduling algorithms, which schedule the satellite instruments for data collection 

and gathering. 

 

1.5 Scope of this thesis 
This thesis describes the requirements and design for emulating the communication 

link between the satellites and ground station nodes in the SBI Emulation system. 
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Communication emulation involves modeling the communication channel and 

incorporating the features of the satellite transmission link for space-based 

communications. The following features will be emulated: 

• The communication channel on the satellite, which forms the medium for wireless 

communication in space. Each satellite or a ground station has communication 

channel, which transmits the signals on the transmission link. 

• Constant bit rate service to provide a guaranteed and fixed data rate on the link. 

• Link Propagation delays during data transmission, which would be the actual path 

delays occurring on the satellite links. 

 

1.5.1 Challenges 

To emulate the communications systems requires consideration of the following 

aspects: 

• A satellite or a ground station can form multiple links. Therefore each emulation 

node should facilitate multiple connections with other emulation nodes. 

• The NASA EOS satellite orbits are somewhat irregular. So, even though it 

possible to predict, the communication resources at any point in time and space 

are varying. So it is highly challenging to provide a dedicated bandwidth for each 

instrument link on the satellite [3]. 

• The propagation delay in satellites is very high. It varies from 10-250ms one-way. 

To simulate such a high propagation delay on the emulation nodes would require 

a large number of packets to be queued at the transmission node. 

 

1.5.2 Solution 

This thesis provides the following solutions to the above mentioned challenges: 

• A satellite establishes wireless connection with the receiver ground stations by 

pointing its instrument antenna in the direction of the receiver antenna. A satellite 

might have multiple instruments facilitating multiple connections. In the SBI 

Emulation network, each satellite link is emulated as an IP over Ethernet 
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connection between two emulation test nodes. To model the multiple instrument-

links would require an equal number of physical Ethernet interfaces on a test 

node. The first section of the thesis deals with creating virtual Ethernet interfaces 

on a single physical Ethernet device to enable multiple connections on a test node. 

The virtual Ethernet devices will model the behavior of multiple instrument 

communication channels on the satellites. 

 

• Each satellite link has a fixed dedicated bandwidth. The link capacity is specified 

by the instrument data rates. The total capacity on the satellite is the sum of all the 

link capacities. In the emulation environment, each node will have bandwidth 

equal to the satellite capacity. The node shall reserve the bandwidth on the 

different links as per the satellite specifications. The bandwidth on each link 

should be fixed and guaranteed, as each link would be dedicated to either routing 

or data collection. The second part of the thesis describes the design for providing 

a constant bit rate on the link by utilizing traffic control Quality of Service 

algorithms in Linux. 

 

• The satellite links establish communication over long distances. The signal 

transmission on these links suffers from high propagation delay. The propagation 

delay ranges from 50 to 250ms depending on the distance between the satellites 

and the ground stations or other satellites. The propagation delay on a particular 

link is also not constant as the satellites are in constant motion. The third part of 

the thesis describes the mechanism for simulating the propagation delay during 

data transmission on the emulation test node. 

 

1.6 Organization of thesis 
The rest of the thesis is organized in the following manner. Chapter 2 describes the 

background theory for this thesis, the fundamental principles of satellite 

communication and gives an overview of the SBI system emulation architecture. 
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Chapter 3 describes the design for creating the Virtual Ethernet devices on the 

emulation nodes. The Virtual Ethernet devices will model the behavior of the 

communication channels on the satellite or ground station. Chapter 4 talks about 

providing Constant Bit Rate Control on the emulation link and Chapter 5 describes 

the mechanism for simulating the path delay on the link. The final chapter states the 

conclusions and the scope for future work. 
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Chapter 2 

2 Background Theory 
 

The communication systems on the satellites consist of several channels (RF or 

optical). Each channel establishes a transmission link for communication. This 

chapter gives a brief overview of the current satellite systems and then proceeds to 

describe the SBI emulation system that is designed to emulate the satellite system. 

  

2.1 Satellite System : Overview  
This section gives an overview of the current satellite system, its components and the 

characteristics of the transmission link. The satellite system comprises of ground 

segment and the space segment. The space segment constitutes the satellites while the 

ground segment is the earth ground stations.  

 

2.1.1 Space Segment 

A satellite establishes a line-of-sight wireless link with the ground stations. Since the 

transmission and the reception frequencies for the satellites are different, the satellite 

has to communicate with two types of earth stations. The uplink earth station 

modulates the signals and radiates it to the satellite, which in most cases is a relay 

satellite[5]. The satellite receives the signal and shifts the signal frequency, amplifies 

it and then re-radiates it back to the earth where it is received by downlink earth 

stations [5]. The EOS satellites rely on the TDRSS system to relay their information. 

 

Satellites communicate with the ground stations or other satellites through a 

transmission link between the source and the destination antennas. Antennas on the 

satellites and the ground stations provide directionality and focus for the signals to be 

transmitted. In absence of the antenna, the signals would radiate in all directions in 

space and the quality of the signal reaching the destination would be low.  
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Every satellite has a different mission and so each satellite is designed individually, 

that is each satellite has its own communications frequency, protocol and command 

structure.  

 

2.1.2 Ground Segment  

The ground segment comprises of the uplink and the downlink earth station 

components. They include: 

• Multiple beam antennas for simultaneous communications with other satellites. 

• Precision Systems for tracking satellites. 

• Uplink and downlink Communication Equipment. 

• Telemetry Tracking and Command (TT&C) systems for monitoring the 

performance of the satellites and receiving telemetry data from the satellites. 

 

2.1.3 Satellite Transmission Link 

The transmitter antenna on a satellite establishes a communication link with the 

receiver antennas for relaying information. The following factors are important for 

evaluating the link performance: 

• The ability of the link to provide a guaranteed Constant bit rate service. 

• Link Propagation Delay. 

• Satellite Channel Bit Error Rate ( BER) 

 

2.1.3.1 Transmission Capacity 

The transmission capacity depends upon the allocated satellite bandwidth for the link.  

Each communication channel on the satellite has reserved bandwidth to provide 

Constant Bit Rate Service for voice, video and data traffic. The satellite bandwidth 

has to be efficiently utilized in case of multiple links. 
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2.1.3.2 Transmission Delay 

Due to large distances between the satellite and the Earth, the signal, travelling at the 

speed of light takes a long time to propagate to the earth and then back to the satellite. 

A complete round trip propagation delay for a satellite link between a GEO satellite 

and the earth, which is approximately 36,000, Kms is around 250ms. This large delay 

has an adverse effect on the transmission of voice and video traffic. In case of data 

communications involving transmission speeds of 10Mbps and higher, huge amount 

of data transmitted by a source is temporarily in flight on the satellite link due to such 

a high propagation delay [4]. 

 

2.1.3.3 Satellite Channel Bit Error Rate(BER) 

BER is defined as the number of transmitted bits received with errors. It is expressed 

as a proportion of the total number of bits transmitted. It is specified in the following 

form: N in 1 x 10x where N is commonly unity. 

 

The channel bit rate is a function of the weather conditions along the propagation 

path. It is unpredictable and variable and during heavy rain storms or cloud cover 

BER can be higher than 1 in 106. Larger distances between the satellites and the earth 

stations can result in a higher BER. BER as low as 1 in 1010 can be achieved by 

employing Forward Error Correction (FEC) technique [4]. 

  

2.2 SBI System Architecture 
The previous section described the elements of the current satellite system. This 

section details the architecture of the SBI system The SBI project proposes to 

establish internetworking through wireless Ethernet technology between Earth 

Observation Satellites (EOS).  

 

The SBI system is designed to facilitate IP over Ethernet connections between the 

satellites and ground stations or other satellites. Since the communication is based on 
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a common protocol, it eliminates the need for designing any satellite-specific 

communications systems or any specialized ground station equipment. The SBI 

system software modules also can be deployed on the satellites and ground stations 

with minimal cost. 

 

The proposed SBI system design is divided into 2 parts: 

• SBI Emulation System:  

This system emulates the satellites and ground stations on an emulation testbed. 

The components of the emulation system model the real hardware and the actual 

communications systems through software. It also emulates the satellite 

communication links between the emulation nodes. The SBI emulation system is 

designed solely for emulation purposes and is not a part of the SBI system to be 

placed on actual satellites and ground stations [7]. 

 

• SBI Node Network:  

The SBI network software creates the space-based Internet between the actual 

satellites and ground stations. This architecture employs software modules that 

can be loaded on to the actual satellites and ground stations to enable them to 

switch network traffic. The SBI network software is evaluated on the SBI 

emulation system.  

 

2.2.1 Features of the SBI system 

2.2.1.1 Types of Satellites 

In the emulation environment, each SBI node represents a satellite or a ground 

station. There are 3 types of nodes: 

• Data Source and Relay Satellites 

• Relay Satellites 

• Facilities or ground stations 
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Data Source and Relay Satellites: 

These satellites are mostly EOS satellites. These satellites are responsible for 

collection of data and also relaying the information to the other SBI nodes in the 

emulation. For SBI satellites that are under consideration, the instrument rates might 

range from a few bits per second to at least 150Mbps [7]. The bit rate on the 

communication link should be able to handle the peak data rate of all instruments that 

can make observations simultaneously.  

 

A Data Source and a Relay satellite should also have at least two transmitters and 

receivers to establish data links for routing data. The data links will have a dedicated 

bandwidth which should be sufficient to carry the peak rate of all the satellite 

instruments and plus the data that is routed from the other satellites.  

 

In the actual satellite environment, these satellites would represent Low Earth 

Orbiting (LEO) satellites. LEO satellites orbit at an altitude less than 2000 Kms from 

the earth’s surface. 

 

High Capacity Relay Satellites: 

These satellites are used solely for relay purposes. They act as router satellites 

switching traffic between other satellites and ground stations. These satellites have 

high data rates and need at least 2 dedicated links to function as a router satellite. 

 

A high capacity relay satellite represents satellites in the Geo-stationary (GEO) or 

Medium Earth (MEO) orbits. GEO satellites are placed at 36,000 Kms above the 

earth’s surface. These satellites have a larger coverage area of the earth and therefore 

are able to see most of the LEO satellites and ground stations within their coverage 

area. These satellites can function as good routers. MEO satellites are about 10,000 

Kms above the earth’s surface and have less coverage area than GEO satellites. 

 



 22

Facilities: 

A facility represents a ground station on the earth’s surface. The SBI node 

representing ground stations should have at least one antenna. It can form link with 

any type of SBI satellite. 

 

2.2.2 SBI Networking 

The SBI networking models the satellite transmission links and emulates the actual 

communication between the satellites and the ground stations. The data 

communication between SBI emulation nodes is IP-based networking over Ethernet. 

The communication links established between nodes have two types of data rates: 

• Low Data rates for Data Source and Relay Satellites for data collection 

• High Data Rates for the Relay Satellites and the Facilities for routing purposes. 

 

The SBI communication is based on a common Internet Protocol (IP). This eliminates 

the need for satellite-specific communications systems and specialized ground station 

equipment in the real satellite systems. IP based communication will also allow the 

SBI system to evolve with technological advances. 

 

The SBI nodes contain software modules that will use adaptive algorithms to figure 

out the network topology and route the network data through optimum routes.  

 

2.2.3 SBI Software 

There are three types of nodes in the SBI emulation environment: 

• Emulation Manager – controls and monitors the entire emulation. This node is a 

part of the Emulation System. 

• Central Operations Node – acts as the TT&C Earth Station for configuring the 

network topology and figuring the optimum routes for the entire network. 

• SBI Nodes – represent the satellites and ground stations. 
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The SBI software is in the form of modules that can be loaded on to the emulation 

nodes. The software can be classified into two categories: 

• SBI Emulation Software 

• SBI Node Software 

 

SBI Emulation Software: 

SBI Emulation Software emulates those portions of the satellite and the ground 

station communications hardware, which cannot be constructed on the SBI emulation 

nodes[7]. It emulates the communication channels on the satellites and ground 

stations and models the communication links between the channels.  

 

SBI Node Software: 

SBI Node Software refers to the software modules that would be placed on the 

satellites and the ground stations in an actual satellite system [7]. This software is 

resident on all the SBI nodes but mainly on the Central Operations Node. The Central 

Operations Node software contains modules, which implement adaptive algorithms 

for configuring the entire network topology. It figures out the optimum connections 

between the nodes based on the scenario parameters obtained from the emulation 

manager. It decides the routing tables for SBI nodes and communicates with the other 

nodes to transmit all the routing information.   

 

The Node Software on the other SBI nodes is responsible for receiving the routing 

information from the operations node. Based on the information obtained from the 

operations node, the SBI nodes initiate request for creating or deleting inter-nodal 

connections. This software also relays satellite-instrument data through the 

established connection links. The inter-nodal connections emulate the actual 

communication links in the satellite system. 
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2.2.4 SBI Emulation System Hardware 

The SBI emulation system hardware contains two networks involving the Emulation 

Manager. The SBI nodes form a Data Network based on Ethernet connections 

through a managed Ethernet switch. The Emulation Manager configures the 

connections between the SBI nodes. The second network runs through an unmanaged 

Ethernet switch and is used by the Emulation Manager to send control commands to 

the other nodes and also sense the status of the emulation. The SBI nodes receive 

their configuration parameters from the Emulation Manager through the second 

network.  

 

Figure 2 illustrates the SBI System Architecture. The Emulation Manager interacts 

with the other SBI nodes on both the networks. The details of each entity will be 

explained in details in the later sections.  
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Fig 2: Space Based Internet System Architecture 

 

2.2.5 SBI Emulation System 

This section describes the emulation system architecture for the SBI environment. 

The emulation system tests and evaluates the SBI network software. A SBI node in 
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the emulation system represents a satellite or a ground station as specified in the 

emulation scenario.  

 

The components of the emulation system software are: 

• Emulation Manager, which is responsible for control and administration of the 

entire emulation scenario.  

• Node Emulation Software on the other SBI nodes. This software contains 

modules to emulate the satellite communication channels and transmission links 

and modules to interface with the actual Node software. 

 

2.2.5.1 Emulation Manager 

The Emulation Manager is the central controlling entity for the emulation system. It is 

a user-level application and hosts the configuration files necessary for creating and 

executing the emulation scenario [8]. It is responsible for emulating the 

communication links on all the other SBI nodes.  

 

The components of the Emulation Manager are: 

• Communications Controller – controlling the communication emulation. 

• Event Controller – responsible for event scheduling. 

• Orbital Manager – performs orbital calculations and computations for the 

emulation scenario. 

• User Interface Manager – Interfaces with the user for input for the emulation 

scenario. 

 

The various components of the Emulation Manager are described below. Figure 3 

shows the Architecture for the Emulation Manager and its modules.  
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Fig 3: SBI Emulation Manager Architecture 

 

2.2.5.1.1 Communication Controller 

The communications controller controls the configuration and control of the 

emulation nodes. It hosts three types of manager modules to communicate with the 

modules on the other SBI nodes. 
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• Node Manager  

The Node Manager is the interface to the other SBI nodes. The control and the 

configuration commands from the Emulation Manager are transmitted to the other 

SBI nodes through this manager module. 

 

• Connection Manager 

The connection manager controls the connections between the SBI nodes. These 

Ethernet connections emulate the communication on the transmission links in satellite 

system. The connection manager receives requests from the SBI nodes to create or 

remove the connections. The connection manager accordingly creates or removes 

connections on the managed Ethernet switch.  

 

• Operations Channel Manager 

The Emulation Manager acts as a medium of communication between the Central 

Operations Node and the other SBI nodes. The Operations Node represents the TT 

&C earth station, which sends commands to the other satellites and ground stations. 

In the real world, the TT&C earth stations use S-Band communication for these 

purposes but in the emulation environment, the commands from the Operations Node 

go through the emulation manager to the respective nodes [8].  

 

The operations channel manager receives the commands from the Central Operations 

Node and forwards them to the respective nodes. The commands are mostly 

instruments scheduling, data transfer scheduling and those related to routing 

information. 

 

2.2.5.1.2 Event Controller 

Event controller schedules the events on the Emulation Manager. This simplifies the 

task of the emulation manager in controlling the entire emulation. Emulating a 

satellite scenario having many satellites and ground stations involves a lot of orbital 
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calculations for the emulation manager. The emulation manager also, has to configure 

each node according to the specifications. It has to keep track of connections between 

the nodes and also issue control commands to the nodes. All these actions are 

considered as events. 

 

The event controller maintains a list of events that are set to occur according to the 

time of occurrence in an event queue. The event manager module is responsible for 

the actual scheduling of the events.   

 

2.2.5.1.3 Orbital Manager 

The orbital manager is responsible for all the orbital calculations pertaining to the 

emulation scenario. The orbital calculations comprise of the orbital positions and 

propagation calculations. It also houses a Node Database, which keeps information 

regarding each emulation node. The information contains the node name, type of 

orbit, mission, positional and vehicular data and data link rates [8].  

 

The orbital manager interfaces with the Satellite Tool Kit (STK) [17] from Analytical 

Graphics, Inc. to get the node information and performing orbital calculations. The 

node database information is conveyed to the Central Operations Node for deciding 

on the network topology and the optimum connections. 

 

2.2.5.1.4 User Interface Manager 

The user interface manager interacts with the user for purposes of executing the 

scenario. It has an I/O Module to control the user interface displays. The user can 

issue commands to start, stop, pause and resume requests to the scenario. The Config 

Module retrieves data from the configuration files regarding all the attributes of the 

scenario to be executed and routes it to the Orbital Manager. The Log Module writes 

out log data periodically to the log files corresponding to events occurring in the 

emulation. 



 30

 

2.2.5.2 Node Emulation Software  

The Node Emulation Software resides on the other nodes. This unit interacts with the 

components of the SBI network software and implements the communication 

emulation unit on the nodes. Figure 4 describes the modules of the Node Emulation 

Software. 

 

 

Fig 4: SBI Node Emulation Software Modules 

 

 The following sections describe the Node Emulation Software. 
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2.2.5.2.1 Node Controller 

The node controller provides interface to the managerial modules on the Emulation 

Manager and also interacts with the Node software and the communication emulation 

unit on the nodes. It has the following modules: 

 

The Node Control module receives commands from the Emulation Manager and 

takes appropriate actions. The actions include elaborate requests such as stop, start or 

pause or involve forwarding of commands to the Node software [8].  

 

The Manager Interface receives orbital data for the node from the EM and routes it to 

the Node software. On the Central Operations Node, this module receives orbital data 

pertaining to the entire scenario from the Emulation Manager and sends it to the Node 

software for orbital calculations. 

 

The Communications Controller module controls the behavior of the communication 

emulation unit. The communication emulation unit is responsible for emulating the 

satellite communication between the nodes. This module implements multiple 

communication channels by using virtual Ethernet devices for communication. This 

module also retrieves from the Emulation Manager, the values for data link rates and 

propagation delay on the communication channels, and sends it to the communication 

emulation unit. 

 

The Routing Stub module conveys the Emulation Manager in case of change in any 

routing connections. The Emulation Manager acts on this data by adding or removing 

a connection on the managed Ethernet switch. 

 

The Operations Interface on the Operations node transmits scheduling commands and 

routing information to the Emulation Manager. The other SBI nodes receive the 

information through the same interface. 
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2.2.5.2.2 Communication Emulation Unit 

This unit is responsible for inter-nodal communication. This unit emulates the 

characteristics of an actual communication link. The satellite instrument data 

generated by the emulation nodes is sent through this unit to the connected nodes on 

the managed Ethernet switch.  It models the following characteristics of satellite 

communication: 

• Communication channel – The communication emulation unit models a 

communication channel for a satellite instrument by creating a virtual Ethernet 

device on the emulation node. A satellite communication link is established 

between the virtual devices on the emulation nodes. To facilitate multiple 

connections on the nodes, multiple virtual devices have to be created.  

• Communication link – The transmission link features are modeled on the Ethernet 

connection between two emulation nodes. It provides the following features on 

the link : 

• Constant bit rate service by reserving bandwidth on each link through 

Quality of Service. 

• Link Propagation delay to simulate the actual link transmission. 

 

The nodes create and configure the virtual devices through the Comm Control 

module.  

 

2.2.6 SBI Node Software 

The SBI node software is the actual software that is to be deployed on the satellites 

and ground stations in a real environment. In the emulation world, this software 

resides on the nodes other than the Emulation Manager. This section gives a brief 

overview of the network software and its interaction with the communication 

emulation unit, which is the main focus of this thesis. 
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The network software can be divided into 2 major sections: 

• Operations Node software – This piece of software resides on the Central 

Operations Node, which emulates the TT&C earth stations. 

• Node Program Software – This software module resides on all the nodes, other 

than the emulation manager 

 

2.2.6.1 Operations Node Software 

This module is responsible for all the connections between the SBI nodes. It 

determines the network topology and configures all the routing tables for all the SBI 

nodes. Figure 5 shows the different modules of the operations node software. 

 

Fig 5: SBI Operations Node Software Modules 

 

The Attributes Module receives node configuration parameters through the Node 

Emulation Software and passes it on to the Topology Module. The Topology Module 
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determines the network topology and the optimum connections between the nodes. 

The Routing Module configures the routing tables for all the nodes by considering the 

optimum routes to the destination.  The Instrument Scheduling module receives the 

attributes from the Attributes Module and is responsible for scheduling the satellite 

instruments on the nodes. The routing and the scheduling information is transmitted 

to the respective nodes via the Emulation Manager. The Operations Node utilizes the 

Operations interface for this purpose. 

 

There are various factors on which the topology algorithm decides on the 

connections: 

• Occlusion by Earth i.e. Loss of Line of Sight (LOS). The satellites communicate 

on the LOS principle. Therefore the decision for connections can be made on 

whether the satellites and the ground stations can see each other or not.  

 

• Instrument-link capacity. Each connection requires a dedicated bandwidth. In case 

of multiple connections on one node, the bandwidth of the node has to be utilized 

efficiently so that multiple dedicated links are possible. The topology module 

decides any new connection only after considering the total bandwidth utilization  

 

• Duration of Line of Sight between two nodes. The nodes establish connection 

only if they have Line of Sight with each other as per the emulation scenario. The 

duration of LOS is an important factor in deciding the connections. A longer 

duration indicates a longer dedicated connection, which allows the satellites to 

route more data on the connection.  

 

The connection decisions for the scenario are based on the routing tables and are 

conveyed to the Emulation Manager. The emulation manager conveys the routing 

information to the rest of the nodes.  
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2.2.6.2 Node Program Software 

Figure 6 shows the details of the Node Program Software. 

 

Fig 6: SBI Node Software Modules 

 

The SBI nodes receive the routing and scheduling information from the Emulation 

Manager to the Node Software module. On the basis of routing information, it 

decides on the connections and then conveys to the Emulation Manager to actually 

create or remove the connections on the managed Ethernet switch.  

 

The Instrument Scheduling module receives the instrument-scheduling commands 

from the Emulation Manager. The actual satellite instrument data is emulated on the 

Ethernet connection between the nodes. The scheduling commands for the nodes 

prompt the node- instruments to turn ON and enable the transmission of the 

instrument data through the virtual Ethernet connections. The instruments on the relay 
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satellite (which are virtual Ethernet connections in the emulation world) have to 

remain activated continuously since they relay data from different satellites or ground 

stations. Incase of Data Source and Relay satellites, some of the instruments are 

dedicated to data collection. These instruments collect data periodically and so they 

need to be turned ON only at the time of data collection. 

 

In the emulation system, instrument data is modeled as NetSpec [9]scripts. NetSpec 

emulates different types of satellite traffic through the scripts and runs those scripts as 

per the configuration of the nodes. So NetSpec data traffic along the communication 

links emulates actual satellite transmission in the emulation system. 
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Chapter 3 

3 Virtual Ethernet 
 

The previous chapter provided the background necessary for understanding the details 

of communication emulation between the nodes in the SBI system. The 

communication in an actual satellite system is established on a transmission link 

between the transmitter and the receiver antennas. Each antenna beam can be divided 

into different channels facilitating multiple connections to the satellites. In the SBI 

emulation system, the transmission link is emulated as an IP over Ethernet connection 

between two emulation nodes. In order to have multiple connections from a single 

node, each node would require multiple Ethernet interfaces.  To eliminate the need 

for several physical Ethernet interfaces, virtual Ethernet (VETH) devices can be 

created on a single physical Ethernet device. 

 

This chapter initially lists the requirements for the implementation of the VETH 

devices and explains the user-level control program written to create and configure 

the devices. The later sections of the chapter cover the implementation details of 

Virtual Ethernet. 

 

3.1 Requirements for VETH Layer 
Virtual Ethernet devices are Linux kernel level abstraction for the operating system, 

which considers these devices as actual network devices[10]. Each virtual Ethernet 

device emulates a satellite communication channel. The communication link is 

emulated as a connection between two virtual devices.  

 

• Virtual devices implement the same functionality as the physical Ethernet 

devices. These devices are created through software code and should be 

transparent to the other layers of the Linux kernel. The virtual devices are 

implemented on the top of physical Ethernet but they do not perform any 
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processing on the data traffic. They create a virtual Ethernet layer between the 

network layer (IP layer) and the physical Ethernet layer.  

 

• Each virtual device has an IP address and a unique 6-byte Medium Access Control 

(MAC) address, which is different from the underlying physical device. The first 3 

bytes represent the vendor portion, which is the ITTC vendor ID. The remaining 3 

bytes of the MAC address are unique for each virtual device. Figure 7 represents 

the MAC address representation of the virtual devices.  

 

Fig 7: Mac Address Representation for the Virtual Devices 

 

The ITTC vendor ID is 00:04:86. The idea of having our own vendor ID was that 

the packets meant for SBI network would have Source and the destination MAC 

addresses having the ITTC Vendor ID. This would help in differentiating packets 

that are not meant for SBI network. The traffic meant for SBI network would pass 

through the VETH layer before going to the IP layer, while the other IP traffic 

would by-pass the VETH layer. 
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• Network Communication through the SBI network: 

Transmission of packets from the VETH device 

The SBI network has the Virtual Ethernet (VETH) layer between the IP and the 

physical Ethernet layer. The network traffic from the IP layer is transmitted to the 

VETH devices before transmission to the physical device layer. The virtual 

devices provide Constant Bit Rate Service to the transmitted packets and 

introduce propagation delay during packet transmission to the physical layer.  

 

Reception of packets on the VETH device 

The VETH device receives the data packets sent above by the physical Ethernet 

device.  The packets meant for the SBI network are de-multiplexed to the right 

virtual device on the basis of the destination MAC address. The packets not 

generated by the SBI network should have the MAC address of the physical 

Ethernet device. The virtual devices send the packets to the IP layer. 

 

• These virtual devices can be created and configured through a user-level control 

program by ioctl( ) system calls to the Linux Kernel. Ioctl( ) calls  allow the user 

to access the kernel implementations and insert the Virtual Ethernet layer in 

between the IP and the physical layer without modifying the existing Kernel 

structure. 
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3.2 VETH Architecture 
VETH devices appear to the higher layers of the Linux kernel as hardware devices. In 

reality, these devices are created and configured by a software code at the user-level. 

The method by which the devices insert themselves between the IP and the Physical 

device layer is simple. For the Linux Kernel, the device is constructed as a C 

structure. The fields of struct device store information relevant to the VETH device 

and the function pointers can be set to point to the appropriate functions for device 

operations.  

 

To create the VETH device, the user-level ioctl () call creates an instance of the struct 

device C structure and registers the device with the kernel. This is similar to how 

physical devices are registered on kernel boot up. During kernel boot, the device 

drivers (for the physical devices) probe the PCI (or ISA) bus for devices [10]. Once 

the devices are found, they allocate and initialize the fields of the struct device 

structure for these devices and assign the appropriate function pointers. These devices 

are then registered with the appropriate kernel entity. 

  

The insertion of the Virtual Ethernet layer shouldn’t affect the operation of the 

physical network hardware. This layer is transparent to the traffic not meant for the 

SBI network. The struct device structure has function pointers for device operations 

such as open, close, send, receive etc. Since each of the virtual devices have the struct 

device structure, these function pointers can be set to the appropriate functions in the 

VETH layer without affecting the existing framework of the Linux kernel. 

 

The Linux Kernel also provides ability to divert the SBI traffic coming from the IP 

layer during transmission or from the physical Ethernet layer during reception to the 

Virtual devices. The transmitted packets from the IP layer do not have to be 

multiplexed as the packets contain the name of the device on which to transmit. But 

the SBI packets that are received on the physical layer have to be routed to the correct 
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virtual device before the IP layer, which requires a multiplexing and de-multiplexing 

mechanism at the physical layer.  

 

The virtual Ethernet devices implement the functionality of the physical Ethernet 

devices and so these devices appear as physical devices to the higher layers. 

 

The next section talks about the user-level control program before describing the 

implementation details. The control program is responsible for creating and 

configuring the virtual devices. 

 

3.3 VETH Control Program 
The user-level control program creates and deletes the virtual Ethernet devices. The 

control program allows per-instance user-level configuration of these devices and 

implement the Ethernet functionality in them. Since the VETH devices exhibit the 

same properties as physical Ethernet devices, they can be also configured by ifconfig. 

 

Fig 8 explains the layers for the SBI network and the interface between the user and 

the Linux kernel for implementing the Virtual Ethernet Layer. The VETH layer is a 

insertion between the IP and the physical layer. The network traffic generated from 

the SBI nodes passes through the VETH layer. Since the communication protocol is 

IP, the virtual devices receive the traffic from the IP layer. The traffic that is not 

meant for the SBI network does not go through the Virtual devices.  

  

There are two types of user controls for the VETH layer: 

• The control program vethctl – to create and destroy the devices. 

• ifconfig - To configure the devices.  

 

The control program configures the virtual devices while the ifconfig command can 

be used to set the network properties for the device.  
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Fig 8: SBI Network Layers and Controls 

 

3.3.1 Ioctl ( ) system call  

The control program is responsible for creating the Virtual Ethernet Layer using the 

ioctl ( ) system call. The ioctl call allows per-instance configuration of each device 

and registers the device with the kernel [10]. The control program creates an INET 

Socket for the ioctl system calls. 
 

if( (ioctl_fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0 ){ 

      fprintf(stderr, "\n Error in creating a Unix socket %s 

\n",  strerror(errno)); 

      exit(1); 

    } 

The control program provides three options to control the devices. The 3 options are: 

• Create Option  
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• Delete Option 

• List Option 

 

These options are command line based and perform operations as specified by the 

command option. 

  

3.3.2 Create Option 

The ‘create' option creates an instance of the virtual device. The virtual devices 

created are numbered sequentially and are named as vethN, where N stands for the 

interface number. 

The syntax for creating the VETH devices is: 

 
Vethctl –c <physical device name> <source MAC address> 

  Where,  

-c: create option 

Physical device name: Name of the physical Ethernet  

Device Ex: eth0 

Source MAC address:  6-byte MAC address for the  

     Virtual device  

Ex: 00:04:86:00:00:01 

 

This option initiates an ioctl( ) call to the Linux kernel relating to this operation. The 

appropriate function at the VETH layer is called to create the devices.  The interface 

number assigned to the device is incremented, starting from ‘0’ as the devices are 

created. An example for creating a virtual device is provided in APPENDIX A. 

 

Some important conditions to be checked while creating the devices: 

• The validity of the underlying physical device should be checked.  

• The MAC address at the command line should have the first 3 bytes (vendor ID) 

equal to the ITTC vendor ID. (00:04:86). 



 44

 

The ‘create’ option returns the name of the interface created. Ex: veth0. 

 

3.3.3 Destroy Option 

The ‘destroy’ option deletes the virtual interface specified by the argument. The 

virtual device is a piece of software inserted in the Linux kernel. So when the virtual 

device is destroyed, the memory occupied by the device has to be released.  

The syntax for destroying a VETH device is: 

 
Vethctl –d <VETH interface number> 

  Where, 

  -d: destroy option 

  VETH Interface Number: The interface number of the 

Virtual Device to be  

deleted. 

The validity of the virtual device is checked before deleting the interface. An 

Example is provided in APPENDIX A. 

 

3.3.4 List Option 

The ‘list’ option provides information on the virtual devices that are created. The 

information includes the names of the virtual devices and the underlying physical 

devices. An example is provided in APPENDIX A. 

The syntax for the ‘list’ option is : 
Vethctl –l 

  Where, 

  -l: list option 

 

3.3.5 Ifconfig commands 

‘ifconfig’  command is used for configuring the virtual devices. Some of the 

important device properties configured through ‘ifconfig’: 
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• IP address of the VETH device 

• Netmask for the VETH device 

• Size of  Maximum Transmission Unit (MTU) 

• Setting the device flags for multicast, promiscuity, broadcast etc. 
 

The details of the implementation of the VETH layer are covered in the next section 

 

3.4 Implementation of the VETH layer 
Virtual devices are implemented in the Linux kernel as pseudo device drivers. 

Through this implementation, with a single physical network device, the system can 

emulate network traffic on an unlimited number of virtual network devices. These 

devices have to be created on top of the physical network device. The current 

implementation supports virtual Ethernet devices over physical Ethernet. 

 

3.4.1 VETH Top Level Design 

The main function of the VETH layer is to facilitate multiple connections on a single 

physical Ethernet device. Each virtual device has a C structure associated with it, 

which stores information relating to the virtual device. Program 3.1 refers to the 

veth_device structure, which is instantiated for each device. It contains information 

about the device name, interface number, the source MAC address and information 

about the physical network device. It also contains struct device, which is the kernel 

structure for representing a network device and whose function pointers can be set 

according to the requirements of the VETH devices. 

 

When the virtual device is created, the contents of this structure are filled as well as 

the device structure pointed by vethDev.  The veth_stats keep statistics of the packets 

flow through the VETH device. The information about the underlying physical device 

is stored in a structure phy_device. Program 3.2 explains the details of both the 

structures. 
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Program 3.1:The Virtual Ethernet Device structure 
 
struct veth_device { 
   
 char name[5];   /* Name of the device (veth0) 
 char phyDevName[5];  /* Name of the physical device 
 int  itfNum;   /* Interface Number 
  

struct device *vethDev; /* Device structure associated 
/* with the virtual device  
/* Ex – veth0 

 char srcMac[6];    /* Source Mac address 
 struct veth_stats *nwStats;/* VETH device statistics   
  
 unsigned long  vdevCreate  ; /* this flag is set when the 
         /* Virtual devices created.
      

struct veth_device  *next; 
  
} 
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The packets coming on the physical Ethernet device have to go through the virtual 

device before going to the IP layer. The packets queued in the net bottom half after 

coming on the hardware device are checked for their packet_type fields. If the 

packet_type is IP then the ‘receive’ function for the IP layer is called. But the VETH 

devices intercept the packets going to the IP layer by changing the pointer of the 

‘receive’ function for the IP packet_type. The func pointer, which contains the ip_rcv 

function for the IP packet_type is changed to the ‘receive’ function of the VETH 

device. The original function is stored in the ‘pdev_recv’ function pointer. The 

Program 3.2: The veth_stats and phy_device structures for the VETH devices 
 
struct veth_stats {    /* statistics for the VETH device  
 int tx_sent; 
 int tx_dropped; 
 int rx_sent; 
 int rx_dropped; 
}  
 
struct phy_device { 
 

char phyDevName[5];  /* name of the physical device  
/* Ex –eth0 

    int num_vethdev;  /* Number of virtual devices  
/* on the physical device. 

 
   int (*change_mtu)(struct device *dev, int new_mtu);  

/* A pointer to store dev-
>change_mtu /* pointer for the 
physical device 

 
int (*pdev_recv) (struct sk_buff* , struct device* ,  

            struct packet_type*);  
/* Function pointer pointing to  
/* ‘Receive’ function of the IP 
layer 

  
struct phy_device *next; 

  
}  
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original pointer is restored back when the virtual devices on the underlying physical 

device are deleted. Similarly, the ‘change_mtu’ function stores the function pointer 

for dev->change_mtu for a physical device. This is explained in Program 3.2. 

 

The virtual devices provide CBR service to the packets and also introduce 

propagation delay in the ‘send’ function of the VETH device before the packets are 

transmitted on the physical device. 

 

The VETH device also has the Kernel device structure and the contents of this 

structure are initialized when the device is registered with the kernel. The VETH 

device function pointers such as hard_start_xmit, init etc point to the functions 

implemented in the VETH layer. 

 

The following functions are associated with the VETH layer, the details of which will 

be explained in the next section: 

• Veth_ioctl: 

This function receives the ioctl calls from the user-level and based on the type of 

the ioctl call, it invokes the appropriate function in the VETH layer. The ioctl call 

can be of three types: create, destroy or list.  

 

• Veth_create: 

This function creates the virtual devices, each having a unique interface number 

and a unique MAC address. 

 

• Veth_init: 

This function sets the function pointers of struct device for the VETH device. 
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• Veth_destroy: 

This function responds to the ioctl call for deleting a virtual device. It frees the 

memory occupied by the virtual device to be destroyed.  

 

• Veth_send: 

This function receives packets from the IP layer and sends it to the physical layer. 

Before transmission, the packets are subjected to CBR service and a propagation 

delay equal to the delay on the satellite link. 

 

• Veth_receive: 

This function receives packets from the physical Ethernet layer and sends it up to 

the IP layer. The packets are de-multiplexed to the right VETH device in the net 

bottom half queue of the Linux kernel. 

 

• Veth_change_mtu 

This function changes the MTU of the VETH device. This function is invoked 

when ifconfig is called to change the MTU of the device.  

 

3.4.2 VETH Detailed Design 

The Virtual Ethernet layer is a software layer between the IP and the physical device layer. 

The virtual devices can be created and configured by different functions of this software 

layer. This section provides a detailed description of the different functions of the VETH 

layer, responsible for the functioning of the virtual devices. 

 

3.4.2.1  Ioctl calls from the Control Program 

The function veth_ioctl is executed in response to the ioctl ( ) call made by the 

Control program. The control program makes three requests to the ioctl function: 

• VETH_CREATE_VDEV -- To create the virtual devices. 

• VETH_DESTROY_VDEV— To destroy the virtual devices 

• VETH_LIST_VDEV--  To list the properties  
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Based on these requests, the veth_ioctl( ) function invokes the different functions of 

the VETH layer. The parameters passed by the control program are in the form of a 

structure. The fields of the structure represent the arguments of the control program 

for all the options. Program 3.3 represents the contents of the structure. 

 

 

 

 

 

 

 

 

3.4.2.2 Creating a VETH device  

The function veth_create ( ) is called from veth_ioctl( )  in response to the 

VETH_CREATE_VDEV  ioctl request.  This function takes the following arguments: 

• Physical device on which the virtual device has to be created. 

• The source MAC address of the virtual device. 

 

The first 3 bytes of the MAC address represents the ITTC KU vendor Id (00:04:86). 

The interface number assigned to the device is sequentially incremented, starting 

from 0. After the device interface is created, it is added to dev_base, which is an 

internal linked list in the Linux kernel to keep track of all the devices.  This interface 

is also added to veth_base, which is a linked list at the VETH layer to maintain 

information of all the virtual devices created.  

 

The virtual device keeps track of its underlying physical device (eth interface) by 

storing the name of the physical device in one of the fields of the veth_device 

Program 3.3: Structure veth_req  for passing arguments to the ioctl ( ) call 

 
Struct  veth_req { 
        Char PhyDev[5];  /* name of the physical device,  

   /* Ex : eth0 
        Int    itf;      /*  The interface number for VETH  

   /*  device 
      Unsigned char srcMac[20];  /* Source MAC address 
} 
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structure. The device structure related to the physical device can be obtained by this 

pseudo-code: 

 
Physical_device = dev->get(veth_device->phyDevName ) 

 

The phy_device structure mentioned in Program 3.2 keeps track of the list of physical 

devices and the number of virtual devices that are created on each physical device. 

 

The device flag vdevCreate in struct veth_device should be set to indicate that the 

virtual device is created. The device created should be registered as a network device 

by calling register_netdev ( ). This function adds the devices to dev_base list and also 

calls the veth_init function to initialize the function pointers of the struct device for 

the VETH device. 

 

Return Value: 

Incase, the virtual device is successfully created and initialized, then veth_create 

returns the interface number of the device as a return value to the control program. 

Otherwise a negative value is returned, in case of error.  The control program on 

receiving the interface value appends it to “veth” and prints the name of the device on 

the screen. An example of the output incase of successful creation of interface 0 is:  
Veth0 device created successfully 

 

3.4.2.3 Initializing a VETH device  

The fields of the veth_device structure are initialized in the veth_create ( ) function, 

but the function pointers for the device structure related to the virtual device are 

initialized in veth_init ( ). The function pointers for the struct device point to the 

respective functions of the VETH layer. An example pseudo-code for initializing the 

function pointers for struct device vethDev of the Virtual Device is listed in Program 

3.4. 
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This function also checks whether the veth_device->vdevCreate flag is set or not. 

The Linux kernel stores the list of devices having the IP packet types in a variable 

ptype_base. The packet type definitions contain a func pointer, which points to the 

receive( ) function in the IP layer. That pointer has to be changed to point to the 

Virtual Ethernet device receive ( ) function. In case the veth_device->vdevCreate flag 

is set then it searches for all the packet types whose device structure points to the 

physical device on which the virtual device is created. For all those devices, the 

packet_type->func pointer has to be changed from ip_rcv( ) to veth_recv ( ), which is 

the receive function for the virtual devices. Before changing the func pointer, the 

original pointer to the IP receive function is stored in phy_device->pdev_recv 

function pointer for each physical device. Program 3.5 states the pseudo-code for 

implementing the change in function pointers. 

 

Program 3.4: Pseudo-code for veth_init function 
 
   
  vethDev->open = NULL; 
  vethDev->stop = NULL; 
  vethDev->hard_start_xmit = &veth_send; /*Transmit Function
  vethDev->mtu = 1500; 
  vethDev->hard_header_len = 0; 
  vethDev->addr_len = MAC_LENGTH; 
  vethDev->change_mtu = &veth_change_mtu; 
  vethDev->set_mac_address = &veth_set_mac_address; 
  vethDev->type = ARPHRD_ETHER;     /* Ethernet Type 
  vethDev->get_stats = &vethDev_get_stats; 
  vethDev->flags = 0; 
  vethDev->qdisc = NULL; 
  vethDev->qdisc_list = NULL; 
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This initializes the packet_type-> func pointer. It points to the veth_recv function for 

the VETH device and the packets, meant for the SBI network, coming on the device 

driver shall pass through veth_recv function before calling ip_rcv. 

  

Return Value: 

If all the fields get initialized, then the function returns a positive value. 

  

3.4.2.4 Sending Data on the VETH device: 

The data traffic has to be routed from the IP layer to the VETH layer before passing it 

onto the hardware layer. The VETH device does bandwidth limiting and introduces a 

propagation delay before transmitting the packets. The bandwidth limitation on the 

connection emulates the satellite transmission link with reserved bandwidth. In the 

Linux kernel, bandwidth on a link can be limited by implementing Quality of Service 

(QoS) algorithms for traffic control. QoS in Linux implements different queuing 

disciplines to provide traffic control. The device structure has the provision for 

Program 3.5: Pseudo-code for changing  “packet_type->func” pointer 
 
 
(for packet_type = ptype_base[ETH_P_IP];  

packet_type != NULL; packet_type->next )  
 

{  
  if ( packet_type->dev == phy_device->dev) { 
 

/* Replace the packet_type->func with veth_recv 
function but before that put the original function pointer 
in our phy_device->pdev_recv function pointer.  We might 
need this back. */ 
 
 phy_device->pdev_recv = ptype->func; 
 packet_type->func = veth_recv ; 
 
} 
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implementing the required specific queuing discipline. The packets coming to the 

VETH layer are queued according to the queuing discipline specified. 

 

The queuing discipline is specified in the struct Qdisc of struct device. The queuing 

discipline can be specified by the Traffic Control (tc). The details of achieving 

bandwidth limitation are explained in the next chapter.  

 

The packet flow from the application layer to the physical device layer through 

VETH device is as follows: 

The Linux kernel socket implementation routes the data traffic from the application 

layer through a write ( )system call onto the Transport layer and then onto the 

Network Layer. The network layer for SBI network is the IP layer. The packets from 

the IP layer call the transmit function for the VETH device and not the physical 

device.  

  

The packet flow from the IP to the physical device layer is as follows:   

The ip_queue_xmit ( )  is the transmit function in the IP layer which calls 

dev_queue_xmit ( ), which is a generic function for all the devices. The arguments 

passed to dev_queue_xmit( )  are the packet contents and the device structure for the 

VETH device. The struct Qdisc field of the device structure implements the queuing 

discipline for providing bandwidth limitation. The dev_queue_xmit function calls the 

enqueue function to queue the packets according to the specific queuing discipline. 

The scheduler implements a qdisc_wakeup () routine to dequeue the packets and call 

veth_send to transmit the packets to the VETH layer. After the packets come to the 

VETH layer, the packets are delayed by a specified value. The specified value 

represents the value of propagation delay on the communication link.  The network 

statistics for the number of packets transmitted is incremented in the veth_send ( ). 

Finally, the packets call dev->hard_start_xmit( ), where dev represents the device 

structure for the physical device (eth)  and the function invokes transmit function of 
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the physical device. Program 3.6 states the packet flow from the IP to the physical 

layer through the VETH layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.5 Receiving Data on the VETH device 

As the packets are received on the physical Ethernet device, they are queued to be 

serviced by the network bottom half at a later time. When the bottom half runs, it 

checks for the packet type of each received packet and invokes the receive ( ) 

function pointed to by func pointer for the packet type. When the virtual Ethernet 

Program 3.6: Packet Flow through the VETH device 
 
 
 
    Transmit Function for the IP layer 
 
 
 
     Generic Function for all devices. Skb->dev 
     Contains the device structure for veth device. 
   
 
    The veth device enqueues packets according  
    to the specific queueing discipline. Performs 
    rate limiting. 
 
           
    After de-queuing the packets, he packets 

Are delayed in the VETH layer to simulate 
the Link propagation Delay 

 

      After delay, Veth_send calls the transmit  
  function for the physical device driver (eth  
interface). 

vethDev->enqueue 
(skb, veth dev-queue) 

vethDev->dequeue 
(skb,vethDev->queue) 

vethDev->hard_start_xmit
(skb, vethDev) 

Physical_dev->hard_start_xmit 
(skb, dev) 

Ip_queue_xmit( skb) 

Dev_queue_xmit (skb) 
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devices are initialized, the func pointer is changed to point to the receive ( ) function 

for the virtual device i.e. veth_recv ( ). 

 

Whenever a packet is received by veth_rcv ( ), its first duty is to find the virtual 

Ethernet device associated with the destination MAC address, which is located in the 

header of the received packet. The destination MAC address in the packet header is 

compared with the veth_device->srcMac fields of all the virtual devices that are 

created on the receiving physical device. Once, the device is found, the function 

increments the network statistics for the number of packets received and then calls 

ip_rcv ( ) for propagation of the buffer up the IP layer.  The arguments passed to the 

ip_rcv function are: packet buffer skb, device structure for the VETH device 

veth_device->vdev,  packet_type. 

 

If the Destination VETH device isn’t found, then the packets are not meant for the 

SBI network and they call the function associated with the phy_device->pdev_recv( ) 

function. In this case, the only difference to the arguments of the receive ()  function 

is that instead of the veth device structure, the device structure for the physical device 

is passed to the function. 

 

The veth_rcv ( ) function does no processing on the packet  and simply forwards the 

packets to the higher layers. 

 

3.4.2.6 Deleting a virtual Ethernet device 

Veth_destroy( ) deletes the specified VETH device. This function is called from 

veth_ioctl ( ) in response to the VETH_DESTROY_VDEV  request. 

 

The argument to this function is the interface number of the VETH device to be 

deleted. This function searches through the veth_base list of virtual devices created. 

Once the device specified by the argument is found, that device has to be removed 
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from the veth_base  and the dev_base lists. By calling unregister_netdevice( ), the 

device is removed from the Kernel device list dev_base. Since virtual device is a 

software device occupying the kernel memory, veth_destroy ( ) frees the memory 

associated with that device. 

 

This function also decrements the phy_device->num_vethDev field when the device is 

deleted. If the device to be destroyed is the last virtual device for the underlying 

physical device, then the function pointer func for the packet types has to be restored 

to the original receive( ) function, which is ip_rcv ( ). 
 

(For ptype = ptype_base[ETH_P_IP]; ptype !=NULL; ptype->next) 

{ 

 if (ptype->dev == phy_device->phyDev) 

  /* Restoring the original pointer of ptype->func */ 

 ptype->func = phy_device->pdev_recv; 

} 

 

Return Value: 

In case the device is destroyed successfully, the function returns a zero value. The 

following message shall be printed on the screen if veth0 has to be deleted: 
 Veth0 destroyed successfully 

 

3.4.2.7 Changing the MTU on the virtual Ethernet device 

The function veth_change_mtu ( ) of the virtual device is invoked when the ifconfig  

command is called to change the MTU of the VETH device. During initialization, the 

function pointer dev->change_mtu is set to this function, where dev represents the 

device structure for the virtual device. The MTU of the virtual device can be less or 

equal to the MTU of the underlying physical device.  
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Chapter 4 

4 Constant Bit Rate Service 
 

The previous chapter described requirements and design for constructing the medium 

for Ethernet communication between two SBI nodes i.e. the Virtual Ethernet Layer 

(VETH). The VETH layer creates and configures the virtual devices and the 

connection between the two VETH devices represents the satellite communication 

link. One of the features of the satellite communication link is providing Constant Bit 

Rate service (CBR). CBR control provides continuous and dedicated link rate for the 

established connection. This type of service is useful for transmission of voice, video 

and data traffic, which requires consistent bandwidth for transmission. CBR service 

can be provided in Linux by implementing rate limiting. Rate limitation can be 

implemented by some of the Quality of Service mechanisms like Token Bucket Filter 

(TBF). QoS disciplines are a part of the traffic control mechanism in Linux. 

 

4.1 Traffic Control In Linux  
Linux kernel offers a wide variety of traffic control functions. Incoming packets are 

examined at the network layer (IP). In case the packets are meant for that node, they 

are forwarded to the higher layers of the protocol stack for further processing or they 

are directly forwarded to the network on a different interface. The higher layers also 

generate data on their own and send them to the lower layers for transmission. The 

packets that are to be sent out on the output interface for transmission are queued at 

the respective interface. Traffic control plays an important role here in “queuing” the 

packets. The traffic control mechanisms can decide if the packets are to be queued or 

dropped. It can also assign the order in which the packets are sent by prioritizing the 

packet flows and can also limit the rate of the outbound traffic. 
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4.1.1 Overview  

Traffic control mechanisms provided by Linux, control the flow of packets on a 

particular device. There are four major components to the traffic control code in 

Linux kernel: 

• Queuing Disciplines 

• Classes ( within the queuing discipline) 

• Filters 

• Policing 

 

Each network device has a queuing discipline associated with it, which controls the 

transmission of the enqueued packets on the device. A very simple queuing discipline 

would be a First In First Out (FIFO) queue. FIFO queuing discipline consists of a 

single queue, which de-queues the packets in the order in which they are queued. 

Some of the more complicated queuing disciplines have different classes [11]to store 

the different types of packets. The packets arriving to these queues have to be 

classified to these different classes by filters [11]. Assigning priority to the classes 

makes it easier to multiplex the traffic of different classes onto the network device. 

The traffic flow also implements policing [11]by discarding packets, which exceed a 

certain rate. 

 

The device structure for each network device has a pointer to struct Qdisc, which 

references the queuing discipline and its function pointers for that device. When the 

enqueue function of the queuing discipline is called, it runs the filters one after the 

other to classify the packet to the class. In case, the queue has no classes, the packets 

are enqueued in the single queue as per the Queuing discipline specified. If the 

Queuing discipline has classes, then the packets after classification are queued inside 

the corresponding class by calling the enqueue function for the Queuing Discipline 

“owned” by that class. Usually, when the packets are enqueued, the corresponding 
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flow can be policed, e.g. by discarding packets which exceed a certain rate or shaped, 

e.g. by limiting the rate for the outgoing link. 

 

4.1.2 Queuing Disciplines 

Each queuing discipline provides set of functions to control its operation. The struct 

Qdisc has function pointers to enqueue, dequeue, requeue, drop, initialize, reset and 

destroy a queuing discipline [11]. 

 

In Linux, the packet is enqueued on an interface by calling dev_queue_xmit( ) 

function. This function calls the enqueue ( ) function associated with the queuing 

discipline for that device. The queuing discipline can be attached to the device 

through struct Qdisc pointer in the struct device. If the queuing discipline has classes, 

then the packet might be classified to different classes and queued inside the class 

queue. Finally, qdisc_wakeup( ) function is called to send the packet on the device 

interface. The qdisc_wakeup ( )  calls qdisc_restart ( ) which is the main function to 

poll the queuing disciplines and send the packets on the device driver. This function 

calls the dequeue ( ) function for the packet and invokes the hard_start_transmit( ) 

function for the device to transmit the packet. 

 

4.1.3 Classes 

Classes represent the medium for differentiating packets for multiple traffic flows. 

Each class has got its unique identifier and is attached to the root queuing discipline. 

Classes implement their “own” queuing disciplines, which in turn can create classes 

and so on. 

The various function pointers for each class are stored in struct Qdisc_class_ops, 

which is attached to the struct Qdisc of the parent queuing discipline.  
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4.1.4 Filters 

Filters are used by the queuing disciplines to assign the incoming packets to their 

respective classes. Each filter has a unique identifier and is attached to the parent 

queuing discipline. Filters are controlled via the function pointers in struct 

tcf_proto_ops in the Linux kernel. There are function pointers to classify, initialize & 

destroy the filters. Filters vary in the scope of packets their instances can classify. 

Some filters have one instance per queuing discipline to classify packets for all 

classes. These filters are generic [12]. The other type of filters is specific, [12] which 

need more than one instance per queuing discipline to classify the packets. 

 

4.2 CBR Control for SBI Emulation System 
This section describes the requirements for implementing CBR control on the SBI 

connections and the use of Linux Traffic Control mechanisms to implement the same. 

 

4.2.1 Requirements for CBR Control in SBI 

In a SBI system, each SBI node is capable of handling different types of data traffic, 

example: Telemetry, Observational Data etc. The SBI data traffic models the actual 

data collected by the satellites and relayed to other satellites and ground stations. The 

nature of the data traffic through the SBI emulation nodes might be continuous or 

periodic. The SBI nodes representing the relay satellites transmit and receive data 

continuously, while the nodes emulating the observational satellites have some links 

dedicated for data collection and some links for relaying data. The ground station 

nodes act as destinations to receive data traffic and also as relay stations to route data 

to other nodes. 

 

The SBI node should be able to utilize the node bandwidth efficiently for transmitting 

and receiving different types of data. The node has multiple connections through its 

virtual devices. Each link should have dedicated bandwidth for transmitting data 
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traffic and this can be implemented by rate limitation mechanisms on the link, 

provided in Linux kernel.  

 

The Linux Kernel implements traffic control mechanisms through Quality of Service 

queuing disciplines. One such discipline is Token Bucket Filter (TBF)[13] 

mechanism, which provides rate limiting on the connection.  In case of multiple 

traffic flows through the same link, the Class Based Queuing (CBQ)[16] can be 

applied to the virtual device. CBQ creates classes for different flows. 

 

4.2.2 CBR Control Mechanism 

CBR control can be provided at each SBI node by TBF queuing mechanism. Each 

virtual Ethernet device implements TBF queue. The parameters for creating the queue 

will be specified by a utility called as “tc”, which stands for Traffic Control. The 

details of the TBF mechanism are explained in the next section.  

 

Each link has a certain data rate. The relay satellites have high data rates, while the 

data source satellites have low data rates. According to the type of entity, the SBI 

node represents the link rate shall be limited by TBF mechanism. In case of multiple 

connections through the same node, the link rates shall be allocated as per the 

requirements, with the sum of the total link rates not exceeding the available 

bandwidth on the node. In case of any new link connection, the bandwidth for that 

link will be assigned after considering the current bandwidth utilization and the 

bandwidth requirements for the new connection. 

 

In case of multiple connections through the nodes, then device implements Class 

Based Queuing (CBQ). CBQ creates classes for different traffic flows. Filters such as 

U32 filters are used to classify the packets to different classes on the basis of different 

destination and source IP addresses.  The details of CBQ and U32 filters are 

explained in the later sections. 
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4.3 Token Bucket Filter (TBF) 
4.3.1 TBF Mechanism 

Token Bucket Flow (TBF) passes packets arriving at rate in bounds of some 

administratively set limit. The TBF implementation consists of a buffer (bucket), 

constantly filled with virtual pieces of information called tokens, at a specific rate 

(token rate). The most importance parameter of the bucket is its size, that is the 

number of tokens it can store. 

 

Each arriving token lets one incoming data packet out of the queue and is then 

removed from the bucket. There are three possible scenarios with different values of 

the token generation rate and the incoming data rate: 

 

• The data packets arrive into TBF queue at a rate equal to the rate of the incoming 

tokens. In this case each incoming packet will have a token and so will not be 

delayed for transmission. 

• The data packets arrive at a rate smaller than the token rate. So a fewer tokens 

will be removed from the bucket with the packets. This would lead to 

accumulation of tokens up to the bucket size. The saved tokens could be used to 

send data over the token rate, if short data burst occurs. 

• The data arrives into TBF at a rate bigger than the token rate. In this case, the data 

packets can be sent only until all the tokens accumulated in the bucket are used. 

After that, over limit packets are dropped. 

 

The last scenario is important because it allows shaping of the bandwidth available to 

the data packets. Shaping the bandwidth causes the link bandwidth to be limited to a 

particular rate.  
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4.3.2 Linux TBF Queuing Discipline 

 

 There are three basic parameters for each TBF queuing discipline: 

• Rate – The rate at which the tokens are generated in the bucket. The rate 

represents the average transmission rate for a traffic flow. 

• Bucket size or Burst Size -- The number of tokens that the token bucket can store. 

Every token is equivalent to one byte. 

• Limit—Limit represents the sum of the queue size and the bucket size. 

 

The limit parameter for the TBF decides whether the packets should be policed or 

shaped. If the limit is equal to the bucket size the queue size is zero and the over limit 

packets are dropped. This polices the data stream. If the limit is greater than the 

bucket size, the over limit packets are queued, which shapes the stream. Therefore, 

the Linux TBF queuing discipline is a meter, shaper and policer, all in one.  

 

4.4 Class Based Queuing 
Class Based Queuing (CBQ) [16]discipline is used to limit the outgoing bandwidth on 

the link. It provides a very flexible and efficient approach to first classifying the user 

traffic and then assigning bandwidth characteristics to each traffic class. Each class 

represents an individual traffic flow on the device. Each traffic class can be assigned 

a committed bandwidth rate, which is a part of the total bandwidth allocated on the 

device. The link rate for each class can be fixed i.e. bounded or flexible, which means 

that the link can borrow bandwidth from its parent class or queuing discipline. 

 

Whenever the packets arrive at the root queue, they are classified. If the traffic class 

hasn’t used all of its bandwidth i.e. the class is under limit, the packet flows 

immediately to the outbound link and no rate limiting is required. But if the class is 

over limit, then the packet is placed in its queue and is rate shaped onto the outbound 
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link. The packet might be allowed to “borrow” from the parent bandwidth if the class 

to which the packet is classified is not “bounded”.  

 

4.5 U32 Classifier  
The U32 classifier [12]is the most advanced filter available in the current 

implementation of filters. The U32 classifier contains 2 fields: a selector and an 

action. The selectors try to match the packets according to the different fields of the 

packet header. It performs certain actions once the packet matches to the selector 

criteria. One of the actions is to direct the packet to its associated class after 

classification. 

 

The U32 selectors define the pattern to match the packet contents with the mask and 

the offset for the start of the pattern matching. The pattern mostly consists of the 

fields in the packet header, which classify the packets. The fields might be of the 

Protocol layer header such as IP header or the Transport Layer header, which is the 

TCP/UDP header.  Some of the patterns used for matching are: 

• Destination IP address 

• Source IP address 

• Source, Destination Port. 

 

4.6 “tc” Utilty 
“tc” [14]stands for Traffic Controller, which is a user level program to create and 

associate queues with the output devices. It can be used to set up various queues and 

associate classes with each of those queues. It also configures the filters for 

classifying the packets into the classes.  The usage for  “tc” [15] is: 
 tc [OPTIONS] OBJECT {COMMAND | help} 

 where, OBJECT := { qdisc | class | filter } 

    OPTIONS := { -s [statistics] | -d [details] | 

        -r [raw] } 
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The Object could be queuing discipline, class or a filter.  
      

4.6.1 Interface between the user and the Linux kernel  

The interface for the “tc” utility between the user and the Linux kernel traffic 

elements is achieved using netlink sockets [12]. The interface information is specified 

in the files pkt_cls.h and pkt_sched.h inside the Linux kernel. Rtnetlink, which is 

based on netlink is used to exchange the traffic control objects between the user level 

and the kernel level. The netlink sockets use struct sockaddr_nl address structure, 

which is used by the user level code to communicate with the kernel.  Whenever the 

“tc” command is executed for a specific action,  a sendto is done on the netlink 

socket. The rtnetlink_rcv_msg function in rtnetlink.c receives the message from the 

user space. It examines the message header to determine the message type. 

Depending on the message type, the corresponding function is invoked. 

 

4.7 CBR control in SBI Emulation System  
The Communication Emulation unit, which is a part of the SBI emulation software on 

the SBI nodes, creates the Virtual Ethernet devices to connect to the other SBI nodes. 

The control program module for configuring the VETH layer is a part of the 

Communication Control Unit. The Communication Control unit also hosts the 

“Traffic Control (tc)“ utility, which configures the traffic control modules in the 

Linux Kernel.  

 

A communication link represents an IP over Ethernet connection between two virtual 

Ethernet devices. The link rate represents the data rate of the satellite that is 

transmitting traffic. The data rate capacity of the link can be limited to the required 

data rate by using Token Bucket Filter (TBF) queuing mechanism. The tc utility is 

loaded on the SBI nodes and is a part of the Communication Control Module and 

configures the parameters of the Queuing disciplines for each of the virtual devices. 
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The parameters for each of the virtual devices are passed from the Operations Node 

via the Emulation Manager.  

 

Quality of Service can also be provided at each link by the traffic control disciplines. 

QoS service deals with classification of different data traffic into different classes 

inside the queue implemented for the communication link. The Linux scheduler 

schedules the transmission of packets from these different classes depending on the 

importance of the data classified.  

 

Figure 9 shows the interaction between the Emulation Modules for setting the CBR 

control on each link. The emulation manager receives the QoS parameters regarding 

the Queuing discipline and the data rate values from the Operations Node.  

Fig 9: SBI Node Controls for providing CBR service 
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The veth_controller module creates and configures the virtual devices and the traffic 

controller module executes the “tc” command through the netlink sockets to set up 

the CBR control on the virtual device. 

 

The parameters received from the Emulation Manager are passed to the Traffic 

Controller module. The traffic controller module attaches the specified queuing 

discipline to the virtual device. If the virtual device has just one type of data traffic 

flowing through it, then the Queuing discipline need not have classes and can 

implement a single Token Bucket Filter through it. In case the virtual device is 

handling different types of data traffic, Example the relay satellites, then Class Based 

Queuing has to be implemented and packets have to be classified by filters. Each of 

the class queues would then implement a Token Bucket Filter Queuing Discipline, 

which would provide CBR control as per the specifications. The details of providing 

CBR control for a VETH devices with or without Class Based Queuing are explained 

in the next section. 

 

4.7.1 Example Scenario for CBR Control   

To demonstrate the CBR control for the SBI system, a scenario is designed which 

takes into account all the different types of nodes in the SBI system.  The CBR 

control for each link depends upon the amount of data traffic handled by that node. 

The need for differentiating traffic into classes arises if a node is handling different 

types of traffic with different degrees of importance. Figure 10 shows a probable SBI 

scenario, which provides CBR Control on the links. 
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Fig 10: SBI System Scenario implementing CBR Control 

 

Nodes A and B represent observational satellites and the links, which are dedicated to 

data collection and transmission to the ground stations or other satellites. These links 

do not relay data from one node to other. These links just have one type of traffic 

flow through them and so they implement CBR control without Class Based Queuing. 

 

 Nodes C and D represent ground stations, which receive the observational data from 

the satellites A and B via the router satellites. The ground station nodes are the 

destination nodes in this scenario and don’t implement CBR control  

 

Nodes X and Node Y represent the High data rate Relay satellites, which relay data 

for different destinations. Node X has traffic for different destinations through its link 

from X to Y. Node X implements CBR control with Class Based Queuing with 

classes created for different destinations. Node Y has two separate links for the 2 

destinations and so doesn’t create classes for the link. In case, there were multiple 

data flows through Node Y on the same link, then classes would have to be created. 
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4.7.2 CBR control without Class Bases Queuing (CBQ) 

Consider data traffic flow from node A to node X. The virtual devices on both the 

nodes form a connection link. The link rate on this connection has to be equal to the 

data rate of the transmitting node. The link rate can be limited to the required value 

by implementing TBF queuing discipline.  

 

Each node receives its QoS parameters from the Operations Node via the Emulation 

Manager. The Operations node decides on the routing tables for each of the nodes. 

The routing tables denote the destination and the gateway IP addresses and the virtual 

device on which to send the traffic. In case of a single traffic flow through a virtual 

device, there would be only one route associated with that device. The Operations 

node decides on the link rate for that device connection and then sends the parameters 

accordingly to the Emulation Manager. The Emulation Manager transmits the 

parameters to the node, which sets the TBF queue according to the parameters.  

 

For Example, if the connection from virtual device veth1 of Node X to veth2 of Node 

A has to be limited to around 450kbps, then the tc command would look like: 
 

 tc qdisc add dev veth1 handle 10: root tbf 450kbit  

 Burst 450kb/8 limit 450kb 

  

 Where, qdisc = queuing discipline 

    Handle = identity for the queuing discipline on 

     That node 

    Root = specifies that it is a root queue. 

    Burst = specifies the size of the largest burst 

    Limit = burst + queue size. 

 

   

The parameters sent by the Operations node to the Traffic controller module: 

• Virtual Device on which TBF queue has to be set 
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• Rate at which the link rates should be limited. This represents the data rate for the 

transmitting node. The transmitting node might be a satellite or a ground station 

and the rates mean the data rates for these entities. The data rates for the satellites 

are obtained from the configuration files on the Emulation Manager. 

• Burst Size for the TBF queue, which will be proportional to the link rate. 

• Limit represents the sum of the burst size plus the queue size.  

 

The Traffic Controller module on receiving the parameters calls the “tc” utility to 

create the TBF queuing discipline for the virtual device. 

 
    

4.7.3 CBR Control  with Class Based Queuing (CBQ) 

CBQ can be created on the device having multiple flows. The criteria for 

classification could be traffic flows meant for different destinations and source IP 

addresses. 

 

Creating a CBQ discipline for a device requires the configuration of three 

components: 

• Queues 

• Classes 

• Filters 

 

The CBQ queuing discipline is the root queue for the virtual device, which creates 

classes for different traffic flows. Filters have to be created to classify the packets to 

these different classes. 

 

Referring to Figure 10 for the scenario, node X has two different flows from node A 

and node B. The flows are meant for different destinations nodes C and D 

respectively. So Node X creates a Class based Queuing Discipline for the virtual 
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device. CBQ has 2 classes for the 2 traffic flows. Packets arriving at the root CBQ 

queue are classified according to the destination IP address and the source IP, which 

is the physical device on which the packet came. U32 filters can be used to classify 

the packets to their classes. The classes can have simple FIFO queues because the rate 

limitation for the traffic is done at the node on which the traffic is generated. The 

virtual device might be allowed to use the whole bandwidth or it might be allocated 

some bandwidth from the total node bandwidth. In this case, the root class for the 

CBQ created has to have the rate restricted to the allocated bandwidth. 

 

 Figure 11 illustrates CBR control on the SBI nodes using Class Based Queuing 

(CBQ). 

 

 

Fig 11: SBI Node CBR Control with Class Based Queuing 
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The Operations Node decides the need for CBQ queuing for the SBI node. 

Accordingly, the parameters for the CBQ queue and the parameters for the individual 

classes and their queues are passed from the Operations Node to the concerned node 

through the Emulation Manager.  

 

The parameters passed by the Operations Node to the SBI node for CBQ: 

• The total bandwidth on the virtual device, 

•  The device name on which to create CBQ. 

 

The parameters for creating classes: 

• Root Class attached to the root queuing discipline. 

• Data rates for each class  

• Individual queuing disciplines for the class: FIFO queuing discipline. 

 

Filters are created for each class. The filters implemented at the root of the CBQ 

classify the packets on the basis of the destination address. The filters implemented 

are U32 filters. 

The parameters passed from the Operations Node for creating the filters: 

• The virtual device  

• The destination IP address and the source IP addresses. 

 

On receiving the parameters for all the components, the Traffic Controller module 

runs the “tc” utility script for the specified virtual device. This utility configures the 

CBR control for the device. A complete example is explained in the APPENDIX B.  

But a short example is provided below: 

 
Creating a root CBQ queue and CBQ class on device veth1 on 

Node X with device bandwidth as 10 Mbps and the root class 

bandwidth restricted to 10Mbps.  
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tc qdisc add dev veth1 root handle 10: cbq bandwidth 10mbit 

avpkt 1000 allot 1514 cell 8 mpu 64 

 

tc class add dev veth1 parent 10:0 classid 10:1 cbq bandwidth 

10mbit rate 10mbit allot 1514 weight 100kbit prio 2  

 

The first command creates a root queue  

Where, avpkt: 1000 bytes  

  Allot: the size of the Ethernet MTU plus the 

         Ethernet header (14bytes). 

  Mpu: minumum number of bytes sent in one packet 

  Cell: the boundaries of the bytes in the packets 

   Transmitted. 

  Rate: the bandwidth allocated to the class 

  Bandwidth: Maximum bandwidth available to the       

             device   

 

 

The second command creates a root class attached to the parent 

queue. The variable “prio” stands for priority assigned to the 

class. Further, within the root class, there would be classes 

created for the 2 flows. The entire example is explained in 

the APPENDIX B. 
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Chapter 5 

5 Link Propagation Delay  
 

The previous chapter provided explanation for having CBR control on the Emulation 

Communication Satellite link. The CBR control limits the rate on the link to the data 

rate of the satellite. So the satellites can route their data as they collect, through the 

virtual device connections to other satellites and ground stations. Since the distance 

between the satellites or satellites and ground stations is very large, the data 

transmission on the communication link suffers from very high propagation delays.  

On account of high propagation delays, large amount of data would be in-flight on the 

transmission link [4].  

 

The Communication Emulation Unit of the SBI System models the features of the 

communications links. The last chapter talked about emulating CBR control through 

Quality of Service mechanisms. This chapter details out the method for simulating the 

propagation delay on the emulation link. The propagation delay is introduced in the 

Virtual Ethernet (VETH) layer after the CBR control. The packets are delayed before 

being transmitted on the physical device. 

  

The chapter first starts with the requirements for simulating the propagation delay and 

proceeds to state the analysis done for calculating propagation delays on some of the 

actual satellite transmission links. Based on some of the analysis results, this chapter 

further describes the algorithm for simulating the propagation delay at the VETH 

layer. 

 

5.1 Requirements for Simulating the Propagation Delay 
The Communication Emulation Unit on the SBI nodes emulates the communication 

system on the satellites and ground stations in an actual satellite system. The satellites 

are at different altitudes on the earth and the distance between them and the ground 
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stations is very large. The propagation delays on the transmission link can be as high 

as 250ms for satellites in GEO orbits. On account of such high propagation delay, 

large amount of packets are in flight on the link before they reach the destination.  

 

• The SBI Emulation System emulates these transmission links as Ethernet 

connections between two virtual Ethernet Interfaces. The propagation delay on 

these Ethernet connections is very negligible on account of very small distances. 

The packets suffer from transmission delay, which depends on link bandwidth and 

packet size and queuing delay, which is varying depending on the amount of data 

queued. 

 

• To model the communication link, simulation of propagation delay is very 

important. The propagation delay is in milliseconds, which is far more than the 

transmission delay. Since the transmission delay is lesser than the propagation 

delay, the packets have to be queued at the VETH device before they are 

transmitted on the device. The amount of time the packets need to be queued 

would correspond to the propagation delay on the transmission link. 

 

• On account of high propagation delays, there are many packets in-flight along the 

transmission path until the first packet reaches the destination. The numbers of in-

flight packets have to be queued at the VETH layer before the first packet is 

transmitted from the VETH layer. 

 

• Therefore, one of the requirements is to find out the queue size that would be 

necessary to place the packets until they are delayed. In case the queue size is not 

up to the requirements, the packets will be dropped at the VETH layer in case if 

the queue is completely filled. Since the propagation delay varies in different 

satellite links, each connection can have different queue size. The queue size has 

to be calculated and allocated at the VETH layer. 
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• Also, on a particular link, the propagation delay varies, which varies the queue 

size on the VETH layer. The variations in the queue size have to be known so as 

to change the queue size according to the changes in the propagation delay. 

 

• The propagation delay at the VETH layer represents the value on the actual link. 

During the simulation time, this value might change as the distance between the 

two elements forming the link change. The changes in the delay values should be 

notified to the VETH layer. This requires a control program that shall interface 

with the delay functions in the VETH layer. The details of the implementation 

are explained in the later sections. 

 

Based on these requirements, an analysis has to be first made for calculating the 

propagation delay values on actual satellite transmission links. Satellites at different 

orbits should be considered. Calculation of propagation delays on the actual 

transmission links can then be considered for the analysis. The values obtained for 

different type of links will help provide a better picture about the maximum and 

minimum delay values and the delay variations for a particular link. 

 

5.2 Propagation Delay Variations in Satellite Systems 
As according to the requirements, one of the tasks is to find the range of values for 

the propagation delays normally occurring on the transmission links. Since 

propagation delays depend on the distance between the elements, the propagation 

delays between all satellite links aren’t the same.  

 

For a complete analysis of the delay variations on a transmission link, all the different 

types of satellites and ground stations have to be considered. There are three types of 

satellites, satellites in LEO, MEO and GEO orbits. All the possible links between the 

satellites and also between the ground stations have to be taken into account for delay 
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computations. Therefore, a total of six different types of links can be considered for a 

thorough analysis. 

 

5.2.1 Using Satellite Tool Kit for delay analysis 

Satellite Tool Kit (STK) is an analysis tool that addresses all phases of the satellite 

systems. STK models the satellite systems and performs analysis of different 

properties of satellites and facilities. These properties include vehicle propagation, 

determination of visibility areas and times for satellite connections, computation of 

access times for the transmission links (Line of Sight) and propagation delay, display 

of orbital positions and generation of results in textual and graphical formats. Based 

on simple inputs through shell scripts or command lines, STK generates orbital paths 

for a variety of space and ground based objects, such as satellites and ground station 

facilities [17].  

 

Scenarios can be created in STK, where the scenario elements are the actual satellites 

and ground stations obtained from the STK satellite database. The STK can simulate 

the entire mission of the satellites through its graphical user interface. It also provides 

reports and graphs on various properties of the satellites and facilities throughout the 

simulation time.  

 

STK has a Connect module to provide the user an easy way to connect with STK and 

work with it in a client-server environment. The interface is using TCP/IP or domain 

sockets. Third-party applications can connect to STK using the library provided with 

the STK Connect Module. This library contains functions, constants and other 

messaging capabilities that help the user use STK. Connect module also allows the 

user to modify the standard messaging formats also.  

 

Figure 12 shows the interaction of the Connect module[17] with the user applications 

to use STK libraries and control simulation graphical interface. 
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Fig 12: User Application using Connect Module to interface with STK 

 

The Connect Module has a list of commands, which the user can execute to control 

the simulation and obtain results. These commands can be executed on the command 

line or through a file. 

 

To analyze the propagation delays in satellite systems, a scenario having 3 satellites 

(all in different orbits) and a ground station was simulated.  This scenario covered all 

types of possible satellites as each satellite is in a different type of orbit. Propagation 

delays were calculated for all the links possible between the elements and a Report 

stating the values of propagation delay versus simulation time was obtained. The 

exact details are covered in the next section 

 

5.2.2 Scenario Details 

The scenario to be simulated had four elements, three satellites and a ground station. 

All the satellites were in different orbits, LEO, MEO and GEO. The satellites were 

obtained from the STK database and the ground station Facility was specified by the 

latitude and longitude on the earth. 

 

Elements in the scenario: 

1) Facility: 
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Name: Ground Station 

Latitude: 12 Deg. 

Longitude: 45 Deg. 

 

2) Satellites: 

 GFO_LEO USA_144_MEO SKYNET_4E_GEO 

Type Satellite Satellite Satellite 

Official Name GFO USA 144 SKYNET_4E 

Mission Oceanography Radar Imaging Military  

Apogee 789Km 3131Km 35797Km 

Perigee 783Km 2689Km 35777Km 

Period 100.5min 148.5 min 1436.0min 

Inclination 108.1deg 63.4deg 2.5deg 

Orbit  LEO MEO GEO 

 

Table 1: Details of the Satellite elements in the Scenario 

The STK tool loads these elements in the simulation. The graphical interface shows 

these elements and their orbits. The GEO satellite is stationary above the ground 

station. The LEO and the MEO satellites are moving in opposite directions to each 

other. The simulation time period was fixed to be 1 day, which is 1440 minutes. 

 

The STK software can compute a report of the access times between two elements. 

Since all the possible links were to be considered, there were six different links 

established: 

1) Ground Station –LEO 2) Ground Station-MEO 

3) Ground Station-GEO 4) MEO –GEO 

5) MEO-LEO    6) LEO-GEO 
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An STK Report was generated giving the access times for each of the links. Also, 

propagation delay on each link was calculated for every minute of the simulation as 

the simulation time was in minutes.  

 

5.2.3 Analysis of Link Propagation Delays 

For each access time frame, a graph of the propagation delay values against the 

simulation time was generated. The graphs were generated for all the links. Each of 

the links is discussed below. 

 

5.2.3.1 Link between Ground Station and a LEO satellite 

Data  

Satellite: GFO_ LEO 

Ground Station: Facility 

The STK generates a report for the Access times for the link during the entire 

simulation. 

 

STK Access Report: 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 70.7942 80.2817 9.487 

2 166.4119 181.2301 14.818 

3 267.8557 275.1652 7.31 

4 737.0386 739.7967 2.758 

5 828.6642 843.2451 14.581 

6 928.5839 939.8317 11.248 

Table 2: STK Access Report for a LEO-Ground Station Link 
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Graphs: 

The Delay variations are observed to be similar for all the accesses and so only a few 

of the graphs are shown.  

 

Fig 13: Propagation Delay versus Time for LEO-Ground Station Access 

 

Observations: 

• The maximum delay on a LEO-ground station link = 11ms 

• Minimum Delay =  3ms 

• The ground station can access the satellite for around 15 minutes maximum 

during each access.  
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• Maximum delay variations per minute are 2ms.  

 

5.2.3.2 Link Between Ground Station and MEO Station 

Data: 

Satellite: USA_144_MEO 

Ground Station: Facility 

There are 6 accesses during the entire simulation. The table below states the Access 

Report for the Ground Station-MEO link. 

 

STK Access Report: 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 121.344 159.444 38.1 

2 276.7916 314.3661 37.574 

3 626.3372 646.9397 20.602 

4 776.8671 817.618 40.751 

5 932.7947 971.2767 38.482 

 

Table 3: STK Access Report for a MEO-Ground Station Link 

Since all the access times are similar, the graphs generated are shown for only four of 

the access times. 
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Graphs: 

 

 

Fig 14: Propagation Delay versus Time for MEO-Ground Station Access 

 

Observations: 

• Max delay = 24ms 

• Minimum Delay =  11ms 

• The ground station can access the MEO satellites for 40 minutes for each access 

duration.  
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• Maximum delay variations per minute: 1ms. The delay doesn’t change with every 

minute, its constant for some amount of time before changing. 

• The delay variations for each access are the same with slight variations in the 

maximum and the minimum values. 

 

5.2.3.3 Link Between Ground Station and GEO Satellite 

Data: 

Satellite: SKYNET_4E_GEO 

Ground Station: Facility 

 

The GEO synchronous satellite appears stationary above the ground station and so the 

ground station can access the satellite continuously throughout the simulation. 

 

STK Access Report: 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 0 1440 1440 

 

Table 4: STK Access Report for a GEO-Ground Station Link 

The graph of propagation delay versus the scenario time (epoch minutes) is plotted as 

follows: 



 86

Graphs: 

 

Fig 15: Propagation Delay versus Time for GEO-Ground Station Access 

 

Observations: 

• Since the GEO satellite is stationary with respect to the ground station at all times, 

the delay is constant throughout the simulation period.  

• Delay = 128ms 

 

5.2.3.4 Link between the LEO and MEO satellites 

Data: 

LEO Satellite: GFO_LEO  

MEO Satellite: USA_144_MEO 

 

The two satellites are travelling in the opposite direction towards each other. The 

number of accesses on the link is more and the duration of each access is uniform 25 
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minutes. The STK Access Report generates the access duration for 24 accesses during 

the entire simulation period. 

 

STK Access Report 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 28.2416 53.7676 25.526 

2 89.0692 113.006 23.937 

3 148.223 173.1477 24.925 

4 208.9476 233.5161 24.569 

5 268.6372 292.8469 24.21 

6 328.3106 353.802 25.491 

7 389.0586 412.9847 23.926 

8 448.2038 473.2368 25.033 

9 509.0033 533.4735 24.47 

10 568.5956 592.867 24.271 

11 628.3841 653.8252 25.441 

12 689.0444 712.964 23.92 

13 748.1949 773.3254 25.131 

14 809.0523 833.4306 24.378 

15 868.5514 892.8966 24.345 

16 928.4606 953.8382 25.378 

17 989.0261 1012.945 23.919 

18 1048.197 1073.412 25.215 

19 1109.095 1133.388 24.293 

20 1168.506 1192.935 24.429 

21 1228.538 1253.842 25.304 

22 1289.003 1312.929 23.925 
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23 1348.21 1373.494 25.285 

24 1409.132 1433.345 24.214 

 

Table 5: STK Access Report for a LEO-MEO Link 

The graphs are plotted for each of the access duration. The delay variations for all the 

access graphs is found to be similar and so only a few graphs are shown here to 

denote the delay variations. 

 

Graphs  

 

Fig 16: Propagation Delay versus Time for LEO-MEO Access 

 

Observations: 

• Since the 2 satellites are travelling opposite to each other, there are more accesses. 

• Maximum delay =  34 ms 

• Minimum delay = 7 ms 

• Maximum Delay Variations per minute = 3ms 

• Total access time for each duration = 25 minutes. 
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• The delay variations exhibit a same pattern for each access. The initial delay is 

around 34ms and then later on decreases gradually till approximately 7ms. As the 

satellites go further away from each other, the delay increases to the maximum 

value of 34ms till the loss of line of sight. 

 

5.2.3.5 Link between the GEO and MEO satellites: 

Data: 

GEO Satellite: SKYNET_4E_GEO  

MEO Satellite: USA_144_MEO 

 

STK Access Report: 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 0 45.4247 45.425 

2 87.9136 556.834 468.92 

3 596.4867 709.072 112.585 

4 752.7151 871.6173 118.902 

5 899.9558 1227.519 327.563 

6 1261.964 1376.87 114.906 

7 1421.919 1440 18.081 

 

Table 6: STK Access Report for a MEO-GEO Link 
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Graphs: 

  

 

Fig 17: Propagation Delay versus Time for MEO-GEO Access 
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Observations: 

• Maximum Delay =  163ms 

• Minimum Delay =  112 ms 

• Maximum Delay Variations per minute = 2ms 

• The delay variations aren’t same for all the accesses. For access intervals more 

than 300 minutes (Access2), the delay variations are uniform with 1ms variation 

per minute. 

• For access intervals of 110 to 115minutes (Access 3) , the delay variations are 

uniform ( 1ms variation per minute), but  a slight change in the pattern is observed 

at delay values between 145 and 135 ms. At around  142 ms, the delay variation is 

2ms per minute. 

• Similar pattern is also observed for access intervals lesser than 45 minutes (access 

1). A slight variation in delay pattern is observed between the delay values 150ms 

and 140ms. 

 

5.2.3.6 Link between the LEO and GEO Stations 

Data: 

GEO Satellite: SKYNET_4E_GEO  

LEO Satellite: GFO_LEO 

 

STK Access Report: 

 

Access Start Time  

( Epoch Minutes ) 

Stop Time 

( Epoch Minutes) 

Duration 

( Minutes) 

1 0 6.2775 6.278 

2 44.7646 105.911 61.146 

3 141.0331 206.5725 65.539 

4 230.7235 381.4226 150.699 
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5 400.6803 468.1245 67.444 

6 501.9027 563.581 61.678 

7 601.682 661.6527 59.971 

8 700.7358 760.8007 60.065 

9 798.604 860.6509 62.047 

10 893.4923 962.2723 68.78 

11 978.1531 1129.955 151.802 

12 1156.339 1220.974 64.635 

13 1256.744 1317.613 60.869 

14 1356.279 1416.128 59.849 

 

Table 7: STK Access Report for a LEO-GEO Link 

Graphs are plotted for Access 3 and Access 4 since there are only two variations in 

the access durations. 
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Graphs: 

 

 

Fig 18: Propagation Delay versus Time for LEO-GEO Access 

 

Observations: 

• Minimum Delay =  112ms 

• Maximum Delay = 150ms 
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• Maximum Delay variation per minute = 2 ms for access intervals around ( 0- 

70minutes), example Access 3. 

• For access intervals in the range of 150 minutes (Access 4), the delay variations 

are uniform (1 ms per minute). 

 

Conclusions: 

• The transmission links for all the possible combinations are examined. 

• The maximum delay variations per minute are 3 ms and minimum is 1 ms. 

 

Based on these results, the algorithm for simulating the propagation delay is devised. 

 

5.3 Algorithm for simulating Delay 
5.3.1 Requirements 

The algorithm is based on the requirements listed in Section 5.1. The propagation 

delay has to be simulated one-way and so the packets have to be delayed while they 

are sent on the physical device of the transmitting SBI node. The algorithm devised 

for simulating the delay is as follows: 

• The packets have to be queued at the VETH layer and the queue size should be 

equal to the size of the in-flight bytes for that particular transmission link. 

 

• So after the packets are delayed for the required amount of time, the packets have 

to be de-queued from the queue. The number of packets that have to be de-queued 

from the queue is equal to the number of packets that are in-flight on the 

transmission link.  

 

• The number of packets to be de-queued at one time should be calculated. To 

compute this number, two parameters are required: transmission delay at the 

source and the propagation delay on the link. 
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• Transmission Delay (seconds) =  Average Packet Size (Bytes) 

                 Bandwidth (bps) 

 

• Total Number of packets in flight  = Propagation Delay (milliseconds) 

         Transmission Delay (milliseconds) 

 

• The packet size can be a standard Ethernet MTU size of 1514 bytes. The 

Bandwidth is the link rate on the connection. The total number of packets 

multiplied by the average packet size gives the actual number of bytes that are in 

flight on the link. 

 

• Another important parameter to be considered is the amount of delay variations 

on the link. This would change the queue size at the VETH layer. From the 

analysis results, the maximum delay variations are mostly 3ms per minute, which 

would increase or decrease the queue size by only 25 packets. The change in the 

queue size is also gradual. 

 

• The above mentioned parameters and the delay value have to be passed to the 

VETH layer through a Delay Control Program. The Delay Control Program is a 

part of the Communications Controller Unit on the SBI Nodes. The control 

program receives the delay parameters from the Emulation Manager and 

accordingly sets the delay at the VETH layer through an ioctl ( ) system call. The 

details of the control program are explained in the next section. 

 

5.3.2 Calculations for the number of In-flight Packets 

For the calculations, consider the maximum link speed on the SBI Node, which is 

100Mbps. The average packet sizes can be 64, 1500 and 9180 bytes. 

 

The first table calculated the transmission delay (in us) . 
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Packet Size (Bytes) 64 1500 9180 

Transmission 

Delay ( us) 

5.12 120 734.4 

 

Table 8: Transmission Delay for different packet sizes 

To following tables give the calculations for the number of packets in flight for all the 

links considered in the analysis. The total number multiplied by the average packet 

size gives the total number of bytes on the link until the first packet reaches the 

destination. 

 

1) LEO-Ground Station : 

Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Max Delay = 11ms 2148 92 15 

Min Delay = 3 ms 586 25 4 

Delay variations  

( +/- 2ms) 

+/- 391 

 

17 3 

  

Table 9: Number of bytes in-flight on a LEO-Ground Station 

 

2) LEO-MEO 

Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Max Delay = 34ms 6641 283 46 

Min Delay = 7ms 1367 58 10 

Delay variations  

( +/- 3ms) 

+/- 586 25 4 

 

Table 10: Number of bytes in-flight on a LEO-MEO Link 
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3) LEO-GEO 

Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Max Delay = 150ms 29267 1250 204 

Min Delay = 112ms 21875 933 153 

Delay variations  

( +/- 2ms) 

+/- 391 17 3 

Table 11: Number of bytes in-flight on a  LEO-GEO Link 

 

4) MEO-Ground Station 

Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Max Delay = 24ms 4688 200 33 

Min Delay = 11ms 2148 92 15 

Delay variations  

( +/- 1ms) 

+/- 195 8 2 

 

Table 12: Number of bytes in-flight on a MEO-Ground Station link 

 

5) MEO-GEO 

Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Max Delay = 163ms 31836 1358 222 

Min Delay = 112ms 21875 933 153 

Delay variations  

( +/- 2ms) 

+/- 391 17 3 

 

Table 13: Number of bytes in-flight on a MEO-GEO Link 
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Number of packets in flight  for 3 packet sizes (bytes) Delay Value (ms) 

64 1500 9180 

Constant Delay  

= 128ms 

25000 1067 174 

 

Table 14: Number of bytes in-flight on a GEO-Ground Station link. 

 

5.3.3 Algorithm Flow 

• The propagation delay has to be introduced after the value of the link bandwidth 

is set to the Constant Bit Rate. The queuing discipline used is Token Bucket Filter 

(TBF) for limiting the rate on the link.  

 

• The packets have to be queued at the VETH Layer for a time equal to the 

propagation delay value before sending it to the physical layer. 

 

• Once the queued packets are delayed for the required amount of time, the packets 

have to be de-queued. The amount of bytes that should be de-queued at one time 

is equal to the number of bytes that are in-flight on the link. 
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5.4 Delay Control Program 
Figure 13 refers to the SBI Node Controls for introducing the propagation delay on 

the VETH devices. 

 

Fig 19: SBI Node Controls to simulate propagation delay 

 

The Delay parameters are obtained from the Emulation Manager through the 

Manager Interface. These parameters are forwarded to the Delay Controller module in 

the Communication Controller Unit. The parameters passed to the control program 

from the Emulation Manager are: 

• The virtual device on which the propagation delay has to be simulated. 
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• The link rate and the average packet size to calculate the transmission delay on 

the link. 

• A complete STK report giving the Access times and the propagation delay values 

(in milliseconds) on the transmission link for the entire simulation time.  

 

The STK report is in steps of seconds. The control program utilizes the “Access 

Report” to get the time duration (in seconds) for each access. Further, within each 

access the control program calculates ranges for which the delay remains constant. 

The control program puts the information in the following format: 

1. Start time (seconds) 

2. Stop time (seconds) 

3. Total Duration (seconds) 

4. Propagation Delay Value (milliseconds) 

 

Getting the delay values from the calculated ranges, the values for transmission delay 

and the queue size (which represents the total in flight bytes) are calculated. These 

calculated values along the delay value is passes to the corresponding virtual device 

through the ioctl( ) call. The control program keeps track of the time for which the 

delay remains constant through the calculated delay range by using sleep( ) function. 

In case of any delay change, the parameters are passed to the VETH layer through the 

control program. 

 

5.5 Implementation at the VETH layer 
The implementation for the propagation delay involves extension to the functionality 

of the VETH layer. Some additional functions have to be added to the existing 

framework of the VETH layer. This section talks about the functions that have to be 

added to the VETH layer for simulating the propagation delay. 
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5.5.1 Additional data structures in the VETH Layer 

The packets have to be queued to the VETH layer to simulate the delay. Each 

instance of the queue is represented by struct queue_element. The queue to store these 

instances is represented by struct times_queue. Every VETH device has a 

times_queue associated with it. The times_queue is an additional field in the 

veth_device structure for the VETH device. Program 5.1 details out struct 

times_queue and struct queue_element.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program 5.1: Structures for queuing packets at the VETH layer 
 
Struct times_queue{ 
 Struct queue_element *list; /* Elements of the queue */ 
 Struct timer_list wd_timer; /* Watchdog Timer */ 
 Long limit;    /* Limit for the queue*/ 
 Struct packet_stats stats;  /* Statistics for the queue */
 Long inflight_bytes;   /* Total in-flight bytes  

* on the link */ 
 long delay;    /* propagation delay on the  

  * link */ 
 
}; 
 
 
struct queue_element{ 
 struct sk_buff *skb;  /* Packet Buffer */ 
 struct timeval time;  /* Timestamp the packet */ 
 long delay_us;   /* Propagation delay for the  
       * skb packet */ 
 struct queue_element *next; 
 struct queue_element *prev; 
 struct times_queue *Queue; /* Queue to which this element 
       * is attached */ 
}; 
 
struct packet_stats{ 
 long bytes;   /* Number of “skb” bytes queued
       * in the times_queue */ 
 int packets;   /* Number of “skb” packets */ 
 int drops;    /* Number of packets dropped */
}; 
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The  struct  times_queue represents the queue to place the packets at the VETH layer 

before transmission. The individual elements of the queue are represented by struct 

queue_element. This structure stores the packet and the time stamp, when it was 

queued. It also stores the propagation delay associated with that packet.  

 

The times_queue also has a watchdog timer incase the packets aren’t de-queued at the 

right time. The veth_device structure has an entry to Times Queue that is associated 

with the device. This queue delays the packets to be sent on the physical device. It 

also stores the value of the propagation delay on the link. This is the value passed 

through the ioctl( ) system call. 

 

5.5.2 Additional Functions for the VETH layer 

These functions can be added as an extension to the VETH layer framework. The 

packets are received from the IP layer to the VETH layer through veth_send( ) 

function. The packets are enqueued on the Times Queue in this function. While de-

queuing the packets, the timestamp on the packets is compared with the current 

timestamp. If the packets have been delayed for the required amount of time, then the 

packets are de-queued from the queue and the transmit function for the physical 

device is called. 

 

Some additional functions have to be added to the VETH layer to implement the 

delay. These functions place the packets on the Times Queue and then de-queue it 

after adding the propagation delay. An additional option has to be added to the 

veth_ioctl ( ) function to pass the delay parameters to the VETH layer.   
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Some of the additional functions added to the VETH layer: 

• Veth_delay_init: 

This function is invoked from veth_ioctl call () to assign the value of the delay 

parameters to the corresponding fields of struct times_queue. The data structures 

are stated in Program 5.1. Program 5.2 states the pseudo-code for initializing the 

fields of struct times_queue. 

  

 

 

 

 

 

 

The fields times_queue->limit and times_queue->delay are passed from the Delay 

Controller Module through the ioctl( ) call. 

 

• Veth_enqueue: 

This function gets the packet from the IP layer. It creates an instance of struct 

queue_element to store the packet and the time stamp, when it was enqueued. 

This function also checks for the maximum queue limit for the Times Queue. In 

case the queue doesn’t exceed the limit, the function veth_enqueue_tail( ) is 

called, which queues the packet at the tail of the queue. 

 

• Veth_enqueue_tail: 

This function queues the packet at the tail of the queue. Each queue element has a 

pointer to its previous and the next element in the Times Queue.  

 

Program 5.2: Initializing the fields for queue limit and delay in Times Queue
 
 
  
  times_queue->limit = inflight_bytes + TOLERANCE; /* from ioctl 

*call */ 
 
  times_queue->delay = prop_delay; /* from ioctl call */ 
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• Veth_enqueue_head: 

This function queues the packet at the head of the queue. This function is called 

from veth_dequeue ( ) function. In case the packet is not delayed for the required 

amount of time, then the packet has to be placed at the head of the queue to be de-

queued again. 

 

• Veth_enqueue_head_init: 

This function initializes the head of the queue. 

 

• Veth_dequeue: 

This function de-queues the packet from the Times Queue. It compares the time 

Stamp on the packet with the current time stamp. If the time difference equals to 

the propagation delay for the packet, then the packet is transmitted to the physical 

device. Otherwise, the packet has to be queued at the head of the Times Queue by 

calling veth_enqueue_head ( ).  

 

• Veth_dequeue_head: 

This function de-queues the packets from the Times Queue. It is called from 

veth_dequeue ( ) function to remove the packet from the queue.  

 

• Veth_watchdog: 

This function is invoked when the watchdog timer related to the Times Queue 

expires. This timer expires if the veth_dequeue ( ) function is not called for a 

certain time. This function de-queues the packet by calling veth_dequeue_head ( ) 

and calling the transmission function for the hardware device. 

 

In case, the packets are not transmitted successfully on the physical device, the 

veth_requeue( ) function is called, which queues the packet again at the head of the 

queue. 
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5.5.3 Modifications to the existing VETH Layer Functions 

• Veth_ioctl 

This function can take another option to pass the delay parameters to the VETH 

layer. The parameters passed are: 

• Propagation Delay (microseconds) 

• Total Number of bytes that are going to be in-flight on the link. 

 

The parameters are passed from the control program into this function through the 

ioctl() call. These values are assigned to the fields of struct times_queue as stated in 

Program 5.2. The ioctl calls the veth_delay_init ( ) for assigning the delay parameters 

to the corresponding fields of Times Queue. 

 

• Veth_init 

This function is modified to initialize the fields of the data structures used for 

delay. The data structures are stated in Program 5.1. Program 5.3 states the 

pseudo-code for initializing the data structures for propagation delay. 

 

 

 

 

 

 

 

 

 

 

• Veth_destroy: 

When the VETH device is destroyed, the memory occupied by the struct 

times_queue and struct queue_element has to be freed.   

Program 5.3: Initializing Data Structures for Delay in veth_init 
 
  veth_enqueue_head_init (vethdevice->times_queue); 
  times_queue->limit = 0; 
  times_queue->delay = 0; 
  init_timer(&times_queue->wd_timer); 
  times_queue->wd_timer.function = veth_watchdog; 
  times_queue->wd_timer.data = (unsigned long)times_queue; 
 
  times_queue->stats.bytes = 0; 
  times_queue->stats.packets = 0; 
  times_queue->stats.drops = 0; 
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5.5.4 Function Flow for simulating the delay 

The packets coming from the IP layer are subjected to CBR control and sent to the 

transmit function for the VETH device. The packets are placed in the queue and de-

queued only after they are delayed for the required amount of time. This section 

explains the sequence of execution of different functions for sending the packet from 

the IP to the physical device layer. 

 

5.5.4.1 Queuing Packets for Inserting the delay 

The packets come to the VETH layer through the veth_send ( ) function. In case the 

packets have to be delayed, the veth_send( ) function calls the veth_enqueue ( )  

function to queue the packets on the Times Queue. In the queuing function, initially 

an instance of struct queue_element is created to store the packet. The packet is time 

stamped when it is queued. The other elements include the delay associated with the 

packet. This value represents the value of the Propagation delay for the VETH device.  

 

The Times Queue has a limit, which is the sum of the in-flight bytes and some 

tolerance. When the packet has to be placed in the Times Queue, the queue limit is 

checked. If the limit exceeds the maximum specified value with the addition of the 

packet, then the “skb” packet is dropped or otherwise the packet is queued. 

 

Once the queue element is created, it is en-queued at the tail of the Times Queue 

using veth_enqueue_tail ( ) function. The Times Queue is attached to the 

corresponding VETH device. Each queue element also has a reference to the queue in 

which the elements are placed. 

 

5.5.4.2 De-queuing the packets for transmission 

The veth_send ( ) function also calls the de-queue function of the packets.  The de-

queue function at the VETH layer, which is veth_dequeue( ), removes the packet 

from the queue. The packet is de-queued from the head of the queue by calling 

veth_dequeue_head( ) function. The time stamp on the packet is compared with the 
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current time. If the difference between the two times equals the propagation delay 

value, then the packet has been delayed and can be transmitted on the physical device 

driver. 

 

If the time difference doesn’t equal the propagation delay value, then the packet is en-

queued at the head of the Times Queue until it is delayed for the specified time using 

veth_enqueue_head ( ) function.  

 

Once the packet is queued, then the transmission function for the physical device is 

called. In case, there is an error in transmission of the packet on the physical device, 

the packet is re-queued on the Times Queue. 
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Chapter 6 

6 Conclusions and Future Work 
 

6.1 Conclusions 
The SBI project aims at creating an Internet between the EOS satellites and 

incorporate routing and switching capabilities in them. The SBI software will enable 

the satellites to route their data to other satellites and grounds stations and not depend 

on the communication satellites such as TDRSS for relaying their information. The 

SBI emulation system described in this thesis will test the software on multiple 

scenarios. The proposed emulation system models an entire satellite system, which 

includes the emulation of the space and the ground segments and the communication 

between them. Emulation of communication links between these elements is a 

challenging task and its design involves careful considerations. 

 

 This thesis work presents a convincing design for emulating the satellite 

communication links. A satellite communication link has the following important 

features, which need to be considered during its design: 

• A satellite transmission link is established between the instrument channels on the 

satellites and ground stations or other satellites. Each instrument has a separate 

communications channel (RF or Optical). 

• The satellite link needs to have a dedicated bandwidth for the entire transmission 

duration to provide Constant bit rate (CBR) service to the signals. 

• On account of large distances, the signals on these links suffer from high 

propagation delays and bit errors. 

 

The design work presented in this thesis covers all these major aspects to emulate the 

communication on the satellite link. This thesis work makes the following 

contributions: 
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• It describes a design for emulating the communication channels through Virtual 

Ethernet (VETH) devices. The connection between two VETH devices emulates 

the communication link. 

• It provides a convincing description for utilizing the Quality of Service algorithms 

in Linux to provide CBR service on the virtual Ethernet connections. This 

mechanism provides a dedicated bandwidth on the connection and emulates the 

CBR feature of the satellite transmission link. 

• It presents an algorithm for simulating high propagation delays on the emulation 

link. The propagation delay values represent the actual path delays occurring on 

the satellite link. 

 

6.2 Future Work 
This thesis presents a design for emulating a simple channel to channel 

communication link. The work does not include the mechanism for modeling bit 

errors on the link. The prototype design for communication emulation, described in 

this thesis can be modified to model the actual Bit Error Rate (BER). This could be 

achieved by introducing bit errors in the packets during transmission.  

 

A convincing design has to be implemented to test its correctness. So one of the 

future tasks would be to implement the communication emulation unit as a separate 

application, test and evaluate it and then integrate it with the entire emulation system. 

The communication emulation unit can be tested on the emulation system hardware. 
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Appendix 
 

Appendix A : Commands and Examples relating to VETH devices 
• Creating a Virtual Device on device eth1 having a MAC Address 00:04:86:00:00:01 

Vethctl –c eth1 00:04:86:00:00:01 

 Vethctl: Virtual Device veth0 created successfully 

 

• Listing the 3 virtual devices created on physical device eth1 along with all 

the details.  

Vethctl –l 

 Number of devices created: 3 

 

 List of devices: 

   On eth1:  3virtual devices 

Virtual device Physical device itfNum Mac Address

 veth2   eth1   2 00:04:86:00:00:03 

 Veth1   eth1   1 00:04:86:00:00:02 

 Veth0   eth1   0 00:04:86:00:00:01 

 

• Deleting a virtual device with interface number 0. 

Vethctl –d 0 

 ItfNum to be deleted: 0 

  

 Vethctl: Virtual Device veth0 destroyed successfully 

 

 

 

 

 

• The virtual devices can be viewed through ifconfig command. 
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Ifconfig veth1 
 
veth1     Link encap:Ethernet  HWaddr 00:04:86:00:00:02   

          inet addr:10.67.2.11  Bcast:10.255.255.255  Mask:255.0.0.0 

          UP BROADCAST RUNNING  MTU:1500  Metric:1 

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:100  

 
      ifconfig eth1 
eth1      Link encap:Ethernet  HWaddr 00:80:C8:B9:02:40   

          inet addr:10.67.2.1  Bcast:10.255.255.255  Mask:255.0.0.0 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:100  

          Interrupt:9 Base address:0xcc00  
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Appendix B: Script for setting up TBF and CBQ queuing disciplines 
 

Consider Fig 10: for the scenario. Node A and Node B are observational Satellites 

having data rates at 450Kbps and 665 Kbps respectively. These nodes have a 

connection from their veth1 devices to Node X on veth1 and veth2 respectively. The 

veth3 of Node X is connected to veth3 of Node Y.  

 

Nodes A and B have TBF queuing disciplines on their virtual devices. The TBF 

queues limit the rate on the link to the data rates specified. 

IP addresses are set as follows:     

 Veth1 on Node A: 10.67.7.1 

 Veth1 on Node B: 10.67.9.1 

 Veth1 on Node X: 10.67.1.1 

 Veth2 on Node X: 10.67.1.2 

 

Node X takes 2 traffic flows:  

Node A (veth1 – 10.67.7.1) to Node C (veth1 10.67.8.1) 

 Node B (veth1 – 10.67.9.1) to Node D (veth1 10.67.11.1) 

 

• Setting up a TBF queue having rate 450Kbps on veth1 of Node A. 
tc qdisc add dev veth1 root handle 10: tbf rate 450kbit burst 

450k/8 limit 450k 

 

• Setting up a TBF queue having rate 665Kbps on veth1 of  Node B. 
tc qdisc add dev veth1 root handle 10: tbf rate 665Kbit burst 

665k/8 limit 665k 

 

• Node X has 2 traffic flows, each on veth1 and veth2. The destinations are Node C 

and Node D and so the traffic is transmitted on veth3 to Node Y. Therefore, a 
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CBQ can be setup on veth3 of Node X. The traffic can be classified to different 

classes on the basis of the source and the destination IP addresses. The individual 

classes can be allotted bandwidth as per the data rate specified. 

 
# Setting up the root CBQ queue on veth3 of Node X. Bandwidth 

allocated to veth3 is 10Mbps. 

 

tc qdisc add dev veth3 root handle 10: cbq bandwidth 10mbit avpkt \  

1000 allot 1514 cell 8 mpu 64 

 

#Attaching the root class to the CBQ queue and creating 2 classes 

within for the two traffic flows. 

 

tc class add dev veth3 parent 10:0 classid 10:1 cbq bandwidth 10Mbit 

rate 10Mbit allot 1514 weight 1Mbit prio 8 maxburst 20 avpkt 1000  

 

tc class add dev veth3 parent 10:1 classid 10:100 cbq bandwidth 

10Mbit rate 450kbit allot 1514 weight 45kbit prio 2 maxburst 20 

avpkt 1000 bounded 

 

tc class add dev veth3 parent 10:1 classid 10:200 cbq bandwidth 

10Mbit rate 665kbit allot 1514 weight 66kbit prio 5 maxburst 20 

avpkt 1000 bounded 

 

 

# Creating U32 classifiers to classify the packets to the classes. 

The filters match each flow on the source and destination IP address 

combination 

 

tc filter add dev veth3 parent 10:0 protocol ip prio 100 u32 match 

ip dst 10.67.8.1 match ip src 10.67.7.1 flowid 10:100 

 

tc filter add dev veth3 parent 10:0 protocol ip prio 200 u32 match 

ip dst 10.67.9.1 match ip src 10.67.11.1 flowid 10:200 
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APPENDIX C: Using STK for Delay Analysis 
 

Appendix C describes the set of STK commands that can be given by the user to get 

the “Access” and “Delay” Reports for a particular transmission link. 

 

• STK has a Connect module, which allows the user to setup a TCP connection 

with STK to obtain information about the scenario. The set of commands can be 

typed in a file and the executed through “AgIPCExp” command.  
 AgIPCExp –f [socketName] < [filename] 

 

 

Referring to the scenario discussed in Section 5.2.2, the STK Connect module can 

be used to load the different elements of the scenario and obtain the “Access” and 

“Delay” Reports for various transmission links. An example of the script is shown 

below: 

 
# Load the Scenario “gnd_3sats” 

New / Scenario gnd_3sats 

 

# Set the Animation and the Simulation time for the 

scenario 

AllowAnimationUpdate Scenario/gnd_3sats ON 

Animate Scenario/gnd_3sats “1 Jan 2000 00:00:00.00” “2 Jan 

2000 00:00:00.00” 

 

# Obtain an “Access” Report and a “AER” Report for a GEO-

Ground Station transmission link in access_geo_gnd.txt and 

delay_geo_gnd.txt respectively. AER report gives delay 

versus time. 
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Report Scenario/gnd_3sats/Satellite/GEO SaveAs “Access” 

“access_geo_gnd.txt” 

Scenario/gnd_3sats/Facility/gnd_station 

 

Report Scenario/gnd_3sats/Satellite/GEO SaveAs “AER” 

“delay_geo_gnd.txt” Scenario/gnd_3sats/Facility/gnd_station 

 

Unload / Scenario/gnd_3sats 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 


